Философское значение теории относительности эйнштейна кратко. Философские проблемы теории относительности

Р Е Ф Е Р А Т

Философские аспекты теории относительности

Эйнштейна

Горинов Д.А.

Пермь 1998г.
Введение.

В конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности А.Эйнштейна.

Создание теории относительности позволило пересмотреть традиционные взгляды и представления о материальном мире. Такой пересмотр существовавших взглядов был необходим, так как в физике накопилось много проблем, которые не могли быть решены с помощью существовавших теорий.

Одной из таких проблем был вопрос о предельности скорости распространения света, которая с точки зрения господствовавшего тогда принципа относительности Галилея, основывавшегося на преобразованиях Галилея, исключалась. Наряду с этим существовало множество экспериментальных фактов в пользу представлений о постоянстве и предельности скорости света (универсальной постоянной). Примером здесь может служить осуществленный в 1887 г. опыт Майкельсона и Морли показавший, что скорость света в вакууме не зависит от движения источников света и одинакова во всех инерциальных системах отсчета. А также наблюдения датского астронома Оле Ремера, определившего еще в 1675г. по запаздыванию затмений спутников Юпитера конечную величину скорости света.

Другая значимая проблема, возникшая в физике, была связана с представлениями о пространстве и времени. Существовавшие в физике представления о них основывались на законах классической механики, поскольку в физике господствовал взгляд, согласно которому всякое явление имеет, в конечном счете, механистическую природу, так как принцип относительности Галилея представлялся всеобщим, относящимся к любым законам, а не только к законам механики. Из принципа Галилея, основывавшегося на преобразованиях Галилея, следовало, что пространство не зависит от времени и наоборот время от пространства.

Пространство и время мыслились как заданные и независимые друг от друга формы, в них укладывались все делавшиеся в физике открытия. Но такое соответствие положений физики концепции пространства и времени существовало лишь до тех пор, пока не были сформулированы законы электродинамики, выраженные в уравнениях Максвелла, так как выяснилось, что уравнения Максвелла не инвариантны относительно преобразований Галилея.

Незадолго до создания теории относительности, Лоренцем были найдены преобразования, при которых уравнения Максвелла оставались инвариантными. В этих преобразованиях, в отличие от преобразований Галилея, время в различных системах отсчета не было одинаковым, но самым главным было то, что из этих преобразований уже не следовало, что пространство и время независимы друг от друга, так как при преобразовании координат участвовало время, а при преобразовании времени - координаты. И как следствие этого встал вопрос - как поступить? Существовало два решения, первое - считать, что электродинамика Максвелла ошибочна, или второе - предположить, что классическая механика с ее преобразованиями и принципом относительности Галилея является приближенной и не может описать всех физических явлений.

Таким образом, на этом этапе в физике проявились противоречия между классическим принципом относительности и положением об универсальной постоянной, а также между классической механикой и электродинамикой. Было много попыток дать другие формулировки законам электродинамики, но они не увенчались успехом. Все это сыграло роль предпосылок к созданию теории относительности.

Работы Эйнштейна наряду с громадным значением в физике имеют, также, большое философское значение. Очевидность этого следует из того, что теория относительности связана с такими понятиями как материя, пространство, время и движение, а они являются одними из фундаментальных философских понятий. Диалектический материализм нашел аргументацию своим представлениям о пространстве и времени в теории Эйнштейна. В диалектическом материализме дается общее определение пространства и времени как форм бытия материи, а следовательно, они неразрывно связаны с материей, неотрывны от нее. «С позиций научного материализма, который основывается на данных частных наук, пространство и время - не самостоятельные независимые от материи реальности, а внутренние формы ее бытия» . Такую неразрывную связь пространства и времени с движущейся материей с успехом показала теория относительности Эйнштейна.

Были также попытки использовать теорию относительности идеалистами в качестве доказательства своей правоты. Так, например, американский физик и философ Ф. Франк говорил, что физика ХХ века, особенно теория относительности и квантовая механика остановили движение философской мысли к материализму, основанное на господстве механической картины мира в прошлом веке. Франк говорил, что «в теории относительности, закон сохранения материи больше не имеет силы; материя может превращаться в нематериальные сущности, в энергию» .

Однако все идеалистические трактовки теории относительности основываются на искаженных выводах. Примером этому может служить то, что иногда идеалисты подменяют философское содержание понятий "абсолютное" и "относительное" физическим. Они утверждают, что поскольку координаты частицы и ее скорость всегда останутся сугубо относительными величинами (в физическом смысле), т. е. они никогда не превратятся даже приближенно в абсолютные величины и поэтому, якобы, никогда не смогут отражать абсолютную истину (в философском смысле). В действительности же координаты и скорость, не смотря на то, что не обладают абсолютным характером (в физическом смысле), являются приближением к абсолютной истине.

Теория относительности устанавливает относительный характер пространства и времени (в физическом смысле), а идеалисты толкуют это как отрицание ею объективного характера пространства и времени. Относительный характер одновременности и последовательности двух событий вытекающий из относительности времени, идеалисты пытаются использовать для отрицания необходимого характера причинной связи. В диалектико-материалистическом понимании и классические представления о пространстве и времени и представления о теории относительности есть относительные истины, включающие в себя лишь элементы абсолютной истины.


До середины XIX века понятие материи в физике было тождественно понятию вещества. До этого времени физика знала материю только как вещество, которое могло иметь три состояния. Такое представление о материи имело место из-за того, что «объектами изучения классической физики являлись лишь движущиеся материальные тела в виде вещества, кроме вещества естествознание не знало других видов и состояний материи (электромагнитные процессы относили или к вещественной материи, или к ее свойствам)» . По этой причине механические свойства вещества были признаны универсальными свойствами мира в целом. Об этом упоминал в своих работах Эйнштейн, писав, что «для физика начала девятнадцатого столетия, реальность нашего внешнего мира состояла из частиц, между которыми действуют простые силы, зависящие только от расстояния» .

Представления о материи начали меняться лишь с появлением нового понятия, введенного английским физиком М. Фарадеем - поля. Фарадей, открыв в 1831 г. электромагнитную индукцию и обнаружив связь между электричеством и магнетизмом, стал основоположником учения об электромагнитном поле и тем самым дал толчок к эволюции представлений об электромагнитных явлениях, а значит и к эволюции понятия материи. Фарадей впервые ввел такие понятия как электрическое и магнитное поле, высказал идею существования электромагнитных волн и тем самым открыл новую страницу в физике. В дальнейшем Максвелл дополнил и развил идеи Фарадея в результате чего и появилась теория электромагнитного поля.

Определенное время ошибочность отождествления материи с веществом не давала о себе знать, по крайней мере, явно, хотя вещество не охватывало собой всех известных объектов природы, не говоря уже об общественных явлениях. Однако принципиальное значение имело то, что материю, находящуюся в форме поля, было невозможно объяснить с помощью механических образов и представлений, и что эта область природы, к которой относятся электромагнитные поля, все больше начинала проявлять себя.

Открытие электрического и магнитного полей стало одним из фундаментальных открытий физики. Оно сильно повлияло на дальнейшее развитие науки, а также на философские представления о мире. Некоторое время электромагнитные поля не могли научно обосновать, построить вокруг них одну стройную теорию. Учеными было выдвинуто множество гипотез в попытке объяснить природу электромагнитных полей. Так Б. Франклин объяснял электрические явления наличием особой материальной субстанции состоящей из очень мелких частиц. Эйлер пытался объяснить электромагнитные явления посредством эфира, он говорил, что свет по отношению к эфиру то же самое, что звук по отношению к воздуху. В этот период стала популярна корпускулярная теория света, согласно которой световые явления объяснялись испусканием частиц светящимися телами. Были попытки объяснить электрические и магнитные явления существованием неких материальных субстанций соответствующих этим явлениям. «Их относили к различным субстанциальным сферам. Даже в начале XIX в. магнитные и электрические процессы объяснялись наличием соответственно магнитной и электрической жидкостей».

Явления связанные с электричеством магнетизмом и светом были известны давно и ученые, изучая их, пытались объяснить эти явления по раздельности, но с 1820г. такой подход стал невозможен, так как нельзя было игнорировать работы, проведенные Ампером и Эрстедом. В 1820г. Эрстедом и Ампером были сделаны открытия, в результате чего стала явной связь между электричеством и магнетизмом. Ампер обнаружил то, что если через проводник расположенный рядом с магнитом пропустить ток то на этот проводник начинают действовать силы со стороны поля магнита. Эрстед наблюдал другой эффект: влияние электрического тока протекающего по проводнику на магнитную стрелку, находящуюся рядом с проводником. Из этого можно было сделать вывод, что изменение электрического поля сопровождается возникновением магнитного поля. Эйнштейн отмечал особое значение сделанным открытиям: «Изменение электрического поля, произведенное движением заряда, всегда сопровождается магнитным полем - заключение основано на опыте Эрстеда, но оно содержит нечто большее. Оно содержит признание того, что связь электрического поля, изменяющегося со временем, с магнитным полем весьма существенна» .

На базе экспериментальных данных, накопленных Эрстедом, Ампером, Фарадеем и другими учеными, Максвелл создал целостную теорию электромагнетизма. Позднее, проведенные им исследования привели к заключению о том, что свет и электромагнитные волны имеет единую природу. Наряду с этим было обнаружено что электрическое и магнитное поле обладает таким свойством, как энергия. Об этом Эйнштейн писал: «Будучи вначале лишь вспомогательной моделью поле становится все более и более реальным. Приписывание полю энергии является дальнейшим шагом в развитии, в котором понятие поля оказывается все более существенным, а субстанциальные концепции, свойственные механистической точке зрения, все более отходят на второй план». Максвелл также показал, что электромагнитное поле будучи один раз созданным, может существовать самостоятельно, независимо от источника. Однако он не выделил поле в отдельную форму материи, которая была бы отлична от вещества.

Дальнейшее развитие теории электромагнетизма рядом ученых, в том числе Г.А. Лоренцем, поколебало привычную картину мира. Так в электронной теории Лоренца в отличие от электродинамики Максвелла заряд, порождающий электромагнитное поле, представлялся уже не формально, роль носителя заряда и источника поля у Лоренца начали играть электроны. Но на пути выяснения связи электромагнитного поля с веществом возникло новое препятствие. Вещество в соответствии с классическими представлениями мыслилось как дискретное материальное образование, а поле представлялось непрерывной средой. Свойства вещества и поля считались несовместимыми. Первым кто перебросил мост через эту пропасть, разделявшую вещество и поле, был М. Планк. Он пришел к выводу, что процессы испускания и поглощения поля веществом происходят дискретно, квантами с энергией E=h n . В результате этого изменилось представления о поле и веществе и привело к тому что было снято препятствие к признанию поля как формы материи. Эйнштейн пошел дальше, он высказал предположение о том, что электромагнитное излучение не только испускается и поглощается порциями, но распространяется дискретно. Он говорил что свободное излучение это поток квантов. Эйнштейн поставил в соответствие кванту света, по аналогии с веществом, импульс - величина которого выражалась через энергию E/c=h n /c (существование импульса было доказано в опытах проведенных русским ученым П. Н. Лебедевым в опытах по измерению давления света на твердые тела и газы). Здесь Эйнштейн показал совместимость свойств вещества и поля, так как левая часть приведенного выше соотношения отражает корпускулярные свойства, а правая - волновые.

Таким образом, подходя к рубежу XIX столетия, было накоплено множество фактов относительно представлений о поле и веществе. Многие ученые стали считать поле и вещество двумя формами существования материи, исходя из этого, а также ряда других соображений, возникла необходимость соединения механики и электродинамики. «Однако так просто присоединить законы электродинамики к законам движения Ньютона и объявить их единой системой, описывающей механические и электромагнитные явления в любой инерциальной системе отсчета, оказалось невозможным». Невозможность такого объединения двух теорий вытекала из того, что эти теории, как уже говорилось ранее, основаны на разных принципах, это выражалось в том, что законы электродинамики в отличие от законов классической механики являются нековариантными относительно преобразований Галилея.

Для того чтобы построить единую систему, в которую бы входила и механика и электродинамика существовало два наиболее очевидных пути. Первый состоял в том, чтобы изменить уравнения Максвелла, то есть законы электродинамики таким образом, чтобы они стали удовлетворять преобразованиям Галилея. Второй путь был связан с классической механикой и требовал ее пересмотра и в частности введения вместо преобразований Галилея других преобразований, которые обеспечили бы ковариантность как законов механики так и законов электродинамики.

Верным оказался второй путь, по которому и пошел Эйнштейн, создав специальную теорию относительности, которая окончательно утвердила новые представления о материи в своих правах.

В дальнейшем знания о материи были дополнены и расширены, более ярко стала выражена интеграция механических и волновых свойств материи. Это можно показать на примере теории, которая была представлена в 1924 г. Луи де Бройлем в ней де Бройль высказал предположение о том, что не только волны обладают корпускулярными свойствами, но и частицы вещества в свою очередь обладают волновыми свойствами. Так де Бройль поставил в соответствие движущейся частице волновую характеристику - длину волны l = h/p, где p - импульс частицы. Основываясь на этих идеях, Э. Шредингер создал квантовую механику, где движение частицы описывается с помощью волновых уравнений. И эти теории, показавшие наличие волновых свойств у вещества, были подтверждены экспериментально - так например, было обнаружено при прохождении микрочастиц через кристаллическую решетку можно наблюдать такие явления, как раньше считалось, присущие только свету, это дифракция и интерференция.

А также была разработана теория квантового поля, в основе которого лежит понятие о квантовом поле - особый вид материи, оно находится в состоянии частицы так и в состоянии поля. Элементарная частица в этой теории представляется как возбужденное состояние квантового поля. Поле - это тот же особый вид материи, который характерен и для частиц, но только находящийся в невозбужденном состоянии. На практике было показано, если энергия кванта электромагнитного поля превысит собственную энергию электрона и позитрона которая, как мы знаем из теории относительности, равна mc 2 и если такой квант столкнется с ядром, то в результате взаимодействия электромагнитного кванта и ядра возникнет пара электрон - позитрон. Существует также обратный процесс: при столкновении электрона и позитрона происходит аннигиляция - вместо двух частиц появляются два g-кванта. Такие взаимопревращения поля в вещество и назад вещества в поле указывают на существование тесной связи вещественной и полевой формы материи, что и было взято в основу при создании многих теорий, в том числе и в теории относительности.

Как можно видеть, после опубликования в 1905г. специальной теории относительности было сделано много открытий связанных с частными исследованиями материи, но все эти открытия полагались на то общее представление о материи, которое было впервые дано в работах Эйнштейна в виде целостной и непротиворечивой картины.

Пространство и время


Проблема пространства и времени, как и проблема материи, непосредственно связана с физической наукой и философией. В диалектическом материализме дается общее определение пространства и времени как форм бытия материи. «С позиций научного материализма, который основывается на данных частных наук, пространство и время - не самостоятельные независимые от материи реальности, а внутренние формы ее бытия» , а следовательно, они неразрывно связаны с материей, неотрывны от нее. Такое представление о пространстве и времени имеет место и в современной физике, однако в период господства классической механики было не так - пространство было оторвано от материи, не было связано с ней, не являлось ее свойством. Такое положение пространства относительно материи вытекало из учения Ньютона, он писал, что «абсолютное пространство по самой сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которые в обыденной жизни принимается за пространство неподвижное... Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным».

Время представлялось также отдельным от материи и не зависело от каких-либо протекающих явлений. Ньютон разделил время, также как и пространство, на абсолютное и относительное, абсолютное - существовало объективно, это «истинное математическое время, само по себе и самой своей сущности, без всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью». Относительное же время было лишь кажущимся, постигаемым лишь с помощью чувств, субъективным восприятием времени.

Пространство и время считались не зависимыми не только от явлений протекающих в материальном мире, но и друг от друга. Это субстанциальная концепция в этой концепции, как уже говорилось ранее, пространство и время являются самостоятельными по отношению к движущейся материи и не зависят друг от друга, подчиняются лишь собственным закономерностям.

Наряду с субстанциональной концепцией существовала и развивалась другая концепция пространства и времени - реляционная. В основном этой концепции придерживались философы-идеалисты, в материализме такая концепция была скорее исключением, чем правилом. Согласно этой концепции пространство и время не есть что-то самостоятельное, а являются производными от более фундаментальной сущности. Корни реляционной концепции уходят в глубь веков к Платону и Аристотелю. По Платону время было сотворено богом, у Аристотеля эта концепция получила большее развитие. Он колебался между материализмом и идеализмом и поэтому признавал две трактовки времени. Согласно одной из них (идеалистической) время представлялось как результат действия души, другая материалистическая состояла в том, что время представлялось результатом объективного движения, однако основным в его представлениях о времени, было, то что время не являлось самостоятельной субстанцией.

Во время господства в физике представлений о пространстве и времени данных в теории Ньютона в философии превалировала реляционная концепция. Так, Лейбниц на основе своих представлений о материи, более широких, нежели у Ньютона, довольно полно развил ее. Лейбниц представлял материю как духовную субстанцию, однако ценным было то, что в определении материи он не ограничился лишь вещественной ее формой, к материи он относил также и свет, и магнитные явления. Лейбниц отвергал существование пустоты и говорил, что материя существует всюду. Исходя из этого, он отверг ньютоновскую концепцию пространства как абсолютного, а следовательно, отбросил и то, что пространство есть нечто самостоятельное. Согласно Лейбницу было бы невозможным рассматривать пространство и время вне вещей, так как они являлись свойствами материи. «Материя, считал он, играет определяющую роль в пространственно-временной структуре. Однако такое представление Лейбница о времени и пространстве не находило подтверждения в современной ему науке и потому не было принято его современниками».

Лейбниц был не единственным, кто противостоял Ньютону, среди материалистов можно выделить Джона Толанда он, также как и Лейбниц, отвергал абсолютизацию пространства и времени, по его мнению, было бы невозможным мыслить пространство и время без материи. Для Толанда не существовало абсолютного пространства отличного от материи которое бы являлось вместилищем материальных тел; нет и абсолютного времени, обособленного от материальных процессов. Пространство и время суть свойства материального мира.

Решающий шаг к развитию материалистического учения о пространстве, основанного на более глубоком понимании свойств материи был сделан Н. И. Лобачевским в 1826г. До этого времени геометрия Евклида считалась верной и незыблемой, в ней говорилось, что пространство может быть только прямолинейным. На евклидову геометрию опирались практически все ученые, так как ее положения прекрасно подтверждались на практике. Исключением не был и Ньютон в создании своей механики.

Лобачевский впервые предпринял попытку подвергнуть сомнению незыблемость учения Евклида, «он разработал первый вариант геометрии криволинейного пространства, в которой через точку на плоскости можно провести более одной прямой параллельной данной, сума углов треугольника меньше 2d и так далее; введя постулат о параллельности прямых, Лобачевский получил внутренне не противоречивую теорию» .

Геометрия Лобачевского была первой из множества разработанных позднее подобных теорий, в качестве примера можно привести сферическую геометрию Римана и геометрию Гаусса. Таким образом, стало ясно, что геометрия Евклида не является абсолютной истиной, и что при определенных обстоятельствах могут существовать другие геометрии отличные от Евклидовой.

«Успехи естественных наук, приведших к открытию материи в состоянии поля, математических знаний, открывших неевклидовы геометрии, а также достижения философского материализма являлись фундаментом, на котором возникло диалектико-материалистическое учение об атрибутах материи. Это учение впитало в себя всю совокупность накопленных естественнонаучных и философских знаний, опираясь на новое представление о материи». В диалектическом материализме категории пространства и времени признаются отражающими внешний мир, они отражают общие свойства и отношения материальных объектов и поэтому имеют общий характер - ни одно материальное образование не мыслимо вне времени и пространства.

Все эти положения диалектического материализма были следствием анализа философских и естественнонаучных знаний. Диалектический материализм соединил в себе все то позитивное знание, накопленное человечеством за все тысячелетия его существования. В философии появилась теория, которая приблизила человека к пониманию окружающего его мира, которая дала ответ на основной вопрос - что есть материя? В физике же до 1905г. такой теории не существовало, имелось множество фактов, догадок, но все выдвигаемые теории содержали лишь осколки истины, многие появлявшиеся теории противоречили друг другу. Такое положение вещей имело место вплоть до опубликования Эйнштейном своих работ.

Бесконечная лестница познания

Создание теории относительности было закономерным результатом переработки накопленных человечеством физических знаний. Теория относительности стала следующей ступенью развития физической науки, включив в себя позитивные моменты предшествующих ей теорий. Так, Эйнштейн в своих работах, отрицая абсолютизм механики Ньютона, не отбросил ее полностью, он отвел ей подобающее место в структуре физического знания, считая, что теоретические выводы механики пригодны лишь для определенного круга явлений. Аналогичным образом обстояло дело и с другими теориями, на которые опирался Эйнштейн, он утверждал преемственность физических теорий, говоря, что «специальная теория относительности представляет собой результат приспособления основ физики к электродинамике Максвелла-Лоренца. Из прежней физики она заимствует предположение о справедливости евклидовой геометрии для законов пространственного расположения абсолютно твердых тел, инерциальную систему и закон инерции. Закон равноценности всех инерциальных систем с точки зрения формулирования законов природы специальная теория относительности принимает справедливым для всей физики (специальный принцип относительности). Из электродинамики Максвелла-Лоренца эта теория заимствует закон постоянства скорости света в вакууме (принцип постоянства скорости света)».

Вместе с тем Эйнштейн понимал, что специальная теория относительности (СТО) также не являлась незыблемым монолитом физики. «Можно лишь заключить, - писал Эйнштейн, - что специальная теория относительности не может претендовать на неограниченную применимость; ее результаты применимы лишь до тех пор, пока можно не учитывать влияние гравитационного поля на физические явления (например световые)». СТО была лишь очередным приближением физической теории, действующим в определенных рамках, которыми являлось гравитационное поле. Логическим развитием специальной теории стала общая теория относительности, она разорвала «гравитационные путы» став на голову выше специальной теории. Тем не менее, общая теория относительности не опровергала специальную теорию, как пытались представить оппоненты Эйнштейна, по этому поводу он в своих работах писал: «Для бесконечно малой области координаты всегда можно выбрать таким образом, что гравитационное поле будет отсутствовать в ней. Тогда можно считать, что в такой бесконечно малой области выполняется специальная теория относительности. Тем самым общая теория относительности связывается со специальной теорией относительности, и результаты последней переносятся на первую» .

Теория относительности позволила сделать громадный шаг вперед в описании окружающего нас мира, объединив бывшие обособленными понятия материи, движения, пространства и времени. Она дала ответы на множество вопросов остававшихся неразрешенными в течение веков, сделала ряд предсказаний подтвердившихся впоследствии, одним из таких предсказаний было предположение сделанное Эйнштейном об искривлении траектории светового луча вблизи Солнца. Но вместе с этим перед учеными возникли новые проблемы. Что стоит за явлением сингулярности, что происходит со звездами-гигантами, когда они «умирают», что есть на самом деле гравитационный коллапс, как зарождалась вселенная - решить эти и многие другие вопросы станет возможным, лишь поднявшись еще на одну ступень вверх по бесконечной лестнице познания.


Орлов В.В. Основы философии (часть первая)

Ньютон И. Математические начала натурфилософии.

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Специальная теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:

    всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

    пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

    одинаковость формы законов механики для всех инерциальных систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;

    при обобщении принципа относительности и распространении его на электромагнитные процессы, постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, также как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу:все системы отсчета являются равноценными для описания законов природы .

С философской точки зрения наиболее значительным результатом общей теории относительности является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.

Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени. Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний, в том числе и в физике. Если первая из них касается движения физических тел по отношению к разным системам отсчета, т.е. характеризует процессы, происходящие в объективном, материальном мире, то вторая относится к росту и развитию нашего знания, т.е. касается мира субъективного, процессов изменения наших представлений об объективном мире.

Преемственная связь между общей и специальной теорий относительности выражается принципом соответствия – методологическим принципом, устанавливающим связь между старыми и новыми теориями.

      1. Симметрия пространства и времени и законы сохранения

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нетер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства – закон сохранения момента импульса.

Эта теорема выражает принцип инвариантности относительно сдвигов в пространстве и во времени , т.е. параллельных переносов начала координат, и начала отсчета времени:смещение во времени и в пространстве не влияет на протекание физических процессов. Указанный принцип является следствиемоднородности пространства и времени:

    однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

    однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

С однородностью пространства связан закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени . Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

С однородностью времени связан закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например, сила трения.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется . В консервативных системах могут происходить лишь превращения кинетической энергии в потенциальную энергию и обратно в эквивалентных количествах.

В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии.

В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии, сущность неуничтожения материи и ее движения, поскольку энергия – универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии – результат обобщения многих экспериментальных данных. Как мы уже говорили, идея этого закона принадлежит М.В. Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными Ю. Майером и Г. Гельмгольцем.

Обратимся еще к одному свойству симметрии пространства – его изотропности . Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро- , макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии.

Р Е Ф Е Р А Т

Философские аспекты теории относительности

Эйнштейна

Горинов Д.А.

Пермь 1998г.
Введение.

В конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности А.Эйнштейна.

Создание теории относительности позволило пересмотреть традиционные взгляды и представления о материальном мире. Такой пересмотр существовавших взглядов был необходим, так как в физике накопилось много проблем, которые не могли быть решены с помощью существовавших теорий.

Одной из таких проблем был вопрос о предельности скорости распространения света, которая с точки зрения господствовавшего тогда принципа относительности Галилея, основывавшегося на преобразованиях Галилея, исключалась. Наряду с этим существовало множество экспериментальных фактов в пользу представлений о постоянстве и предельности скорости света (универсальной постоянной). Примером здесь может служить осуществленный в 1887 г. опыт Майкельсона и Морли показавший, что скорость света в вакууме не зависит от движения источников света и одинакова во всех инерциальных системах отсчета. А также наблюдения датского астронома Оле Ремера, определившего еще в 1675г. по запаздыванию затмений спутников Юпитера конечную величину скорости света.

Другая значимая проблема, возникшая в физике, была связана с представлениями о пространстве и времени. Существовавшие в физике представления о них основывались на законах классической механики, поскольку в физике господствовал взгляд, согласно которому всякое явление имеет, в конечном счете, механистическую природу, так как принцип относительности Галилея представлялся всеобщим, относящимся к любым законам, а не только к законам механики. Из принципа Галилея, основывавшегося на преобразованиях Галилея, следовало, что пространство не зависит от времени и наоборот время от пространства.

Пространство и время мыслились как заданные и независимые друг от друга формы, в них укладывались все делавшиеся в физике открытия. Но такое соответствие положений физики концепции пространства и времени существовало лишь до тех пор, пока не были сформулированы законы электродинамики, выраженные в уравнениях Максвелла, так как выяснилось, что уравнения Максвелла не инвариантны относительно преобразований Галилея.

Незадолго до создания теории относительности, Лоренцем были найдены преобразования, при которых уравнения Максвелла оставались инвариантными. В этих преобразованиях, в отличие от преобразований Галилея, время в различных системах отсчета не было одинаковым, но самым главным было то, что из этих преобразований уже не следовало, что пространство и время независимы друг от друга, так как при преобразовании координат участвовало время, а при преобразовании времени - координаты. И как следствие этого встал вопрос - как поступить? Существовало два решения, первое - считать, что электродинамика Максвелла ошибочна, или второе - предположить, что классическая механика с ее преобразованиями и принципом относительности Галилея является приближенной и не может описать всех физических явлений.

Таким образом, на этом этапе в физике проявились противоречия между классическим принципом относительности и положением об универсальной постоянной, а также между классической механикой и электродинамикой. Было много попыток дать другие формулировки законам электродинамики, но они не увенчались успехом. Все это сыграло роль предпосылок к созданию теории относительности.

Работы Эйнштейна наряду с громадным значением в физике имеют, также, большое философское значение. Очевидность этого следует из того, что теория относительности связана с такими понятиями как материя, пространство, время и движение, а они являются одними из фундаментальных философских понятий. Диалектический материализм нашел аргументацию своим представлениям о пространстве и времени в теории Эйнштейна. В диалектическом материализме дается общее определение пространства и времени как форм бытия материи, а следовательно, они неразрывно связаны с материей, неотрывны от нее. «С позиций научного материализма, который основывается на данных частных наук, пространство и время - не самостоятельные независимые от материи реальности, а внутренние формы ее бытия» . Такую неразрывную связь пространства и времени с движущейся материей с успехом показала теория относительности Эйнштейна.

Были также попытки использовать теорию относительности идеалистами в качестве доказательства своей правоты. Так, например, американский физик и философ Ф. Франк говорил, что физика ХХ века, особенно теория относительности и квантовая механика остановили движение философской мысли к материализму, основанное на господстве механической картины мира в прошлом веке. Франк говорил, что «в теории относительности, закон сохранения материи больше не имеет силы; материя может превращаться в нематериальные сущности, в энергию» .

Однако все идеалистические трактовки теории относительности основываются на искаженных выводах. Примером этому может служить то, что иногда идеалисты подменяют философское содержание понятий "абсолютное" и "относительное" физическим. Они утверждают, что поскольку координаты частицы и ее скорость всегда останутся сугубо относительными величинами (в физическом смысле), т. е. они никогда не превратятся даже приближенно в абсолютные величины и поэтому, якобы, никогда не смогут отражать абсолютную истину (в философском смысле). В действительности же координаты и скорость, не смотря на то, что не обладают абсолютным характером (в физическом смысле), являются приближением к абсолютной истине.

Теория относительности устанавливает относительный характер пространства и времени (в физическом смысле), а идеалисты толкуют это как отрицание ею объективного характера пространства и времени. Относительный характер одновременности и последовательности двух событий вытекающий из относительности времени, идеалисты пытаются использовать для отрицания необходимого характера причинной связи. В диалектико-материалистическом понимании и классические представления о пространстве и времени и представления о теории относительности есть относительные истины, включающие в себя лишь элементы абсолютной истины.

До середины XIX века понятие материи в физике было тождественно понятию вещества. До этого времени физика знала материю только как вещество, которое могло иметь три состояния. Такое представление о материи имело место из-за того, что «объектами изучения классической физики являлись лишь движущиеся материальные тела в виде вещества, кроме вещества естествознание не знало других видов и состояний материи (электромагнитные процессы относили или к вещественной материи, или к ее свойствам)» . По этой причине механические свойства вещества были признаны универсальными свойствами мира в целом. Об этом упоминал в своих работах Эйнштейн, писав, что «для физика начала девятнадцатого столетия, реальность нашего внешнего мира состояла из частиц, между которыми действуют простые силы, зависящие только от расстояния» .

Представления о материи начали меняться лишь с появлением нового понятия, введенного английским физиком М. Фарадеем - поля. Фарадей, открыв в 1831 г. электромагнитную индукцию и обнаружив связь между электричеством и магнетизмом, стал основоположником учения об электромагнитном поле и тем самым дал толчок к эволюции представлений об электромагнитных явлениях, а значит и к эволюции понятия материи. Фарадей впервые ввел такие понятия как электрическое и магнитное поле, высказал идею существования электромагнитных волн и тем самым открыл новую страницу в физике. В дальнейшем Максвелл дополнил и развил идеи Фарадея в результате чего и появилась теория электромагнитного поля.

Определенное время ошибочность отождествления материи с веществом не давала о себе знать, по крайней мере, явно, хотя вещество не охватывало собой всех известных объектов природы, не говоря уже об общественных явлениях. Однако принципиальное значение имело то, что материю, находящуюся в форме поля, было невозможно объяснить с помощью механических образов и представлений, и что эта область природы, к которой относятся электромагнитные поля, все больше начинала проявлять себя.

Открытие электрического и магнитного полей стало одним из фундаментальных открытий физики. Оно сильно повлияло на дальнейшее развитие науки, а также на философские представления о мире. Некоторое время электромагнитные поля не могли научно обосновать, построить вокруг них одну стройную теорию. Учеными было выдвинуто множество гипотез в попытке объяснить природу электромагнитных полей. Так Б. Франклин объяснял электрические явления наличием особой материальной субстанции состоящей из очень мелких частиц. Эйлер пытался объяснить электромагнитные явления посредством эфира, он говорил, что свет по отношению к эфиру то же самое, что звук по отношению к воздуху. В этот период стала популярна корпускулярная теория света, согласно которой световые явления объяснялись испусканием частиц светящимися телами. Были попытки объяснить электрические и магнитные явления существованием неких материальных субстанций соответствующих этим явлениям. «Их относили к различным субстанциальным сферам. Даже в начале XIX в. магнитные и электрические процессы объяснялись наличием соответственно магнитной и электрической жидкостей».

Философское значение теории относительности заключается прежде всего в том, что она подтвердила диалектико-материалистическое понимание пространства и времени, их неразрывной связи друг с другом и материей. Философский смысл новой теории заключался не только в подтверждении уже существовавших положений научной философии, а в том, что она дала материал и толчок для существенного углубления научной философской концепции пространства, времени, движения и материи. Она наполнила более глубоким содержанием понятие связи пространства и времени, их зависимости от материи. С теорией относительности в науку и философию входит понятие о различных формах пространства и времени.

Наконец, величайшее значение теории относительности и неевклидовой геометрии состоит в том, что они потребовали пересмотра казавшихся незыблемыми представления о неизменных пространстве и времени, об их абсолютном характере.

Физическая форма материи: единство, сущность, способ существования, направленность эволюции.

Виды материи:

Вещество (имеет массу покоя, различные агрегатные состояния)

Форма материи – совокупность различных объектов и систем, обладающих единой качественной определенностью, выражающейся в общих свойствах и специфических для данной формы материи способах существования.

Физическая форма материи (ФФМ): единство, сущность, способ существования, направленность эволюции.

Физическая форма материи известна нам лишь с простого уровня – лептонов и кварков, выше которого уровень элементарных частиц – протонов, нейтронов, атомов макротел, включая образование – метагалактику, или нашу вселенную. В более укрупненном плане ФФМ может рассматриваться как составленная из двух основных форм физической материи – вещества и поля.

Хотя современная физика не знает как наиболее простых, так и наиболее крупных уровней физической реальности, в ней получила серьезные основания идея генетического единства ФФМ. Согласно современным представлениям, известная нам физическая реальность возникла из относительно простого сингулярного состояния в результате “Большого взрыва” 10-20 млрд. лет назад. Не зная нижнего и верхнего пределов ФФМ, мы можем, однако, с большой уверенностью заключить о существовании объединяющих физическую реальность двух наиболее фундаментальных свойств – массы и энергии.

Каждая частная физическая форма материи и движения обладает своими специфическими свойствами, отличающими ее от других форм, однако в целом, в своей тотальности частные физические формы материи характеризуются единым, общим, интегральным свойством – энергией, в которой угасают эти специфические свойства, исчезают различия между частными физическими формами материи и движения. Наличие этого свойства оказывается необходимой основой взаимодействия и взаимопревращения различных физических объектов, позволяет ввести общую меру физического движения, отражающую единство физической реальности, ее отличие от химической, биологической, социальной форм материи.

Фундаментальные свойства масса и энергия находятся в глубокой зависимости, фиксируемой соотношением Эйнштейна E=mc2. таким образом, физическая форма материи – это масс-энергетический мир.

Материал современной физики позволяет определить специфический способ, или форму, развития. С момента Большого взрыва развитие ФФМ осуществлялось первоначально путем преимущественно дифференциации, возникновения все большего многообразия физических объектов, затем, все в большей степени, посредством прямого субстратного синтеза, интеграции простых образований в более сложные. Важнейшей особенностью этого процесса дифференциации – интеграции является его масс-энергетический характер.

Единым способом существования являются 4 типа взаимодействия: сильное, слабое, электромагнитное, гравитационное.

Министерство Образования и Науки РФ

ФГБОУ ВПО

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ

ГОРНЫЙ УНИВЕРСИТЕТ

Кафедра философии и культурологии

Реферат на тему “Философские проблемы теории относительности”

Преподаватель: Гвоздецкий А.В. Студент: Паршаков А.В. Группа: ТГР 12-1

Екатеринбург

Введение…………………………………………..……………………………….3

Физика и философия. Теория относительности…………………………..…….4

Заключение……………………………………………………………………… 15

Список используемой литературы……………………………………………...16

Введение.

Темой для моего реферата я выбрал тему, связывающую, казалось бы, на первый взгляд, две разные и несовместимые науки: философию, и физику, а точнее, теорию относительности. Еще в конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности.

Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и отчасти решены теорией относительности, необходимы для рассмотрения философских аспектов современной физики. В известном смысле можно сказать, что создание теории относительности - в противоположность квантовой теории - потребовало сравнительно немного времени с момента окончательного осознания трудностей, о которых в данном случае шла речь, до их разрешения.

Физика и философия. Теория относительности.

Повторение опыта Майкельсона Морлеем и Миллером в 1904 году явилось первым надежным доказательством невозможности обнаружить поступательное движение Земли с помощью оптических методов, а решающая работа Эйнштейна появилась менее чем два года спустя. С другой стороны, опыт Морлея и Миллера и работа Эйнштейна явились все-таки, пожалуй, лишь последними фазами развития, которое началось гораздо ранее и которое, по-видимому, можно связать с проблемой "электродинамики движущихся сред".

Электродинамика движущихся сред оказалась важным разделом физики и техники. Серьезная трудность выявилась в этой области только тогда, когда Максвелл вскрыл электромагнитную природу световых волн. Эти волны одним отличаются от других, уже известных ранее волн, например от звуковых волн. Они могут распространяться в пустом пространстве. Если звонок заставить звучать в сосуде, из которого откачан воздух, то звук не достигает пространства вне сосуда. Свет же свободно проходит сквозь безвоздушное пространство. Поэтому предположили, что световые волны можно рассматривать как упругие волны в очень легкой субстанции, называемой эфиром, которую нельзя ни видеть, ни ощущать, но которая заполняет как безвоздушное пространство, так и пространство, занятое другим веществом. Мысль о том, что электромагнитные волны обладают своей собственной реальностью, независимой ни от каких тел, в то время еще не приходила физикам в голову. Так как это вещество - эфир - могло проникать во все другие тела, то встал вопрос: что происходит, если тело приведено в движение? Принимает ли эфир участие в этом движении, и если да, то как распространяется световая волна в этом движущемся эфире?

Эксперименты, которые дают ответ на этот вопрос, трудны по следующей причине: скорости движущихся тел обычно чрезвычайно малы по сравнению со скоростью света. Поэтому движение этих тел может вызвать только очень незначительные эффекты. Электронная теория, развитая Лоренцом в 1895 году, дала удовлетворительное описание этих эффектов "первого порядка". Но эксперимент Майкельсона, Морлея и Миллера создал новую ситуацию: чтобы получить большие эффекты, а тем самым и более точные результаты, казалось целесообразным экспериментировать с телами, движущимися очень быстро. Вычисление эффекта, который следует ожидать, показывает, что он в данном случае должен быть очень малым, так как оказывается пропорциональным квадрату отношения скорости Земли к скорости света. Поэтому необходимо поставить точные эксперименты по интерференции двух световых пучков, один из которых направлен параллельно, а другой - перпендикулярно к направлению движения Земли. Первый эксперимент такого рода, выполненный Майкельсоном в 1881 году, был недостаточно точен. Но и последующие повторные эксперименты не обнаружили ни малейших следов ожидаемого эффекта. Такого рода окончательным доказательством того, что эффект ожидаемого порядка величины не имеет места, являются в особенности эксперименты Морлея и Миллера 1904 года.

Их результат казался сначала непонятным, но он имеет отношение и к другому вопросу, незадолго до этого уже осаждавшемуся физиками. В Ньютоновской механике справедлив определенный принцип относительности, который можно характеризовать следующими словами: если в определенной системе отсчета законы Ньютоновской механики выполняются для механического движения тела, в таком случае это имеет место и в любой другой системе отсчета, движущейся относительно первой системы равномерно и прямолинейно. Равномерное и прямолинейное движение не вызывает, таким образом, никаких механических эффектов в этой системе, и поэтому эти эффекты не могут служить средством обнаружения такого движения.

Подобного рода принцип относительности, как казалось физикам, не мог быть справедлив в оптике и электродинамике. Ибо если первая система покоится относительно эфира, то движущаяся система, напротив, не находится в состоянии покоя, и отсюда следует, что движение этой второй системы относительно эфира можно наблюдать благодаря эффектам того рода, которые были исследованы Майкельсоном. Отрицательный результат опыта Морлея и Миллера 1904 года позволял поэтому снова воскресить идею о том, что принцип относительности такого рода все-таки, вероятно, мог быть также справедлив в электродинамике, как и ранее в Ньютоновской механике.

С другой стороны, имелся старый опыт Физо 1851 года, который, казалось, непосредственно противоречил этому принципу относительности. Физо исследовал скорость света в движущейся жидкости. Если бы принцип относительности был справедлив, то суммарная скорость света в движущейся жидкости должна была бы быть равной сумме скорости жидкости и скорости света в покоящейся жидкости. Однако это было не так. Опыт Физо показал, что суммарная скорость была несколько меньше, чем указанная сумма.

Решающий шаг был сделан в 1905 году Эйнштейном, истолковавшим кажущееся время в преобразованиях Лоренца как время реальное и исключившим из рассмотрения время, которое Лоренц называл "истинным". Это означало изменение оснований физики - совершенно неожиданное и радикальное изменение, для которого именно и была необходима смелость молодого и революционного гения. Чтобы сделать этот шаг в плане математического описания природы, надо было лишь применить к опыту преобразование Лоренца непротиворечивым образом. Однако благодаря новому истолкованию этого преобразования изменялись представления физиков о структуре пространства и времени, и многие проблемы физики предстали поэтому в новом свете Эфирная субстанция, например, оказывалась ненужной и могла быть просто вычеркнута из учебников физики. На самом деле принимать во внимание такую субстанцию больше не имеет смысла и много проще говорить, что световые волны распространяются в пустом пространстве и что электромагнитные поля обладают своей собственной реальностью и могут существовать в пустом пространстве.

Решающее изменение, однако, затрагивает структуру пространства и времени. Очень трудно описать это изменение словами обычного языка без применения математики, так как обычные слова "пространство" и "время" уже относятся к структуре пространства и времени, представляющей собой идеализацию и упрощение действительной структуры. Несмотря на это, необходимо попытаться описать новую структуру, и, пожалуй, это можно сделать следующим образом. Когда мы употребляем слово "прошлое", то тем самым имеем в виду все те события, о которых мы, по крайней мере в принципе, можем что-то знать и получить какие-то сведения. Подобным же образом слово "будущее" охватывает все те события, на которые мы, по крайней мере в принципе, еще можем воздействовать, которые мы можем как-то пытаться изменить или воспрепятствовать их свершению. Хотя сразу трудно утверждать, почему эти определения слов "прошлое" и "будущее" следует считать особенно целесообразными, но можно легко показать, что они в самом деле очень точно соответствуют обычному употреблению этих выражений. Если их употребляют подобным образом, то, как показывают результаты многих экспериментов, область событий, относимых к будущему или прошлому, не зависит от состояния движения или других свойств наблюдателя. На более строгом математическом языке можно сказать, что введенное определение инвариантно относительно перемещений наблюдателя. Оно справедливо как в Ньютоновской механике, так и в теории относительности Эйнштейна.

Но здесь возникает существенное различие: в классической теории мы принимаем, что будущее и прошлое отделены друг от друга бесконечно малым интервалом времени, который можно назвать настоящим мгновением. В теории же относительности мы видели, что дело обстоит несколько иначе. Будущее отделено от прошлого конечным интервалом времени, длительность которого зависит от расстояния до наблюдателя. Какое угодно воздействие может распространяться только со скоростью, которая меньше или равна скорости распространения света. Поэтому наблюдатель в данное мгновение не может ни знать, ни оказать влияние на событие, происшедшее в некоторой удаленной точке в промежутке между двумя характеристическими моментами времени. Первый момент - мгновение, в которое должен быть послан из места события световой сигнал, который достигнет наблюдателя в момент наблюдения. Другой момент - мгновение, в которое световой сигнал, посланный наблюдателем в момент наблюдения, достигает места события. Весь конечный интервал времени между обоими этими мгновениями может быть назван для наблюдателя в данный момент наблюдения "настоящим". Ибо любое событие, происшедшее в этот интервал времени, не может в момент выполнения наблюдения ни стать известным наблюдателю, ни испытать какое-либо воздействие последнего, и именно так было определено понятие "настоящее". Всякое событие, имеющее место между обоими характеристическими моментами времени, может быть названо "одновременным с актом наблюдения".

Использование выражения "может быть названо" уже указывает на двусмысленность слова "одновременно", объясняющуюся тем, что слово "одновременно" возникло из опыта повседневной жизни, в пределах которого скорость света можно считать практически бесконечно большой. На самом же деле слово "одновременно" может быть определено в физике несколько иначе, и Эйнштейн использовал в своих работах это второе определение "одновременности". Если два события в одной и той же точке пространства происходят одновременно, мы говорим, что они совпадают. Это выражение совершенно однозначно. Теперь представим себе три точки в пространстве, лежащие на одной прямой линии таким образом, что средняя точка находится на одном и том же расстоянии от обеих крайних. Если два события в обеих внешних точках происходят в такие моменты времени, что световые сигналы, посланные в момент свершения событий, приходя в среднюю точку, совпадают, то оба события можно определить как "одновременные". Это определение является в данном случае более узким, чем первое. Одно из его важнейших следствий состоит в том, что, когда два события одновременны для одного наблюдателя, они, возможно, не одновременны для другого наблюдателя; это будет иметь место, если второй наблюдатель движется относительно первого. Соотношение между обоими определениями слова "одновременно" можно выразить высказыванием: во всех случаях, когда два события одновременны в первом смысле, можно найти также систему отсчета, в которой они одновременны и во втором смысле. Несколько более наглядно положение вещей в целом можно, пожалуй, изобразить следующим образом: предположим, что спутник, вращающийся вокруг Земли, испускает сигнал, который через некоторый малый промежуток времени принимается станцией наблюдения на Земле. Эта станция наблюдения в ответ на данный сигнал посылает спутнику команду, которую он принимает через некоторый малый промежуток времени. Весь интервал времени между посылкой сигнала и приемом команды можно считать на спутнике, согласно первому определению, одновременным с моментом приема сигнала на Земле. Если на спутнике выбирается какое-либо определенное мгновение из этого интервала, то, хотя это мгновение, вообще говоря, в смысле второго определения, не "одновременно" с моментом приема сигнала на Земле, всегда существует система отсчета, в которой эта одновременность имеет место.

Первое определение слова "одновременно" кажется несколько более соответствующим обычному употреблению этого слова в повседневной жизни, так как вопрос о том, одновременны ли два процесса, в повседневной жизни определенно не зависит от системы отсчета. В обоих же релятивистских определениях понятие одновременности приобрело ту точность, которая совершенно отсутствовала у него в языке повседневной жизни. В квантовой теории физики должны были уже заранее осознать, что понятия классической механики описывают природу недостаточно точно, что квантовые законы ограничивают их применимость и что поэтому при их использовании необходима большая осторожность. В теории относительности физики, напротив, пытались изменить смысл слов классической физики, уточнив эти понятия таким образом, чтобы они точно соответствовали новой, только что познанной ситуации в природе.

50 лет назад, когда была создана теория относительности, гипотеза об эквивалентности массы и энергии революционизировала физику, но экспериментальных доказательств этого закона было тогда очень мало. В наши дни можно во многих экспериментах непосредственно видеть, как элементарные частицы рождаются из кинетической энергии и как такие частицы могут снова исчезнуть, превратившись в излучение. Поэтому ныне превращение энергии в массу и наоборот не представляет собой ничего необыкновенного.

Эквивалентность массы и энергии, кроме своего огромного значения для практической физики, подняла также вопросы, связанные с очень старой философской проблематикой. Различные философские системы прошлого исходили из тезиса, что субстанция, или материя, неуничтожима. Эксперименты, которые проводятся в современной физике, показали, что элементарные частицы, например, позитроны и электроны, могут быть уничтожены и превращены в излучение. Означает ли это, что более старые философские системы тем самым опровергнуты новейшим опытом и что аргументы, выдвигающиеся в этих более ранних системах, должны считаться ложными?

Это было бы, несомненно, несколько преждевременное и неоправданное заключение, ибо понятия "субстанция" и "материя" в античной или средневековой философии нельзя просто отождествлять с понятием "масса" в современной физике. Если наши современные знания выразить на языке более старых философских систем, то можно было бы, например, массу и энергию рассматривать в качестве двух различных форм одной и той же субстанции и, таким образом, сохранить представление о неуничтожимой субстанции.

Гипотетическая субстанция "эфир", игравшая столь важную роль в более ранних истолкованиях теории Максвелла в XIX столетии, как это уже упоминалось выше, была устранена теорией относительности. Это обстоятельство часто выражают также в виде утверждения, что теорией относительности было устранено абсолютное пространство. Но такое утверждение нуждается в некоторых оговорках. Правда, согласно специальной теории относительности, больше нельзя выбрать определенную систему отсчета, относительно которой эфир покоился бы и которая по этой причине заслуживала бы название "абсолютной". Но было бы все же неправильно утверждать, что теперь пространство будто бы потеряло все физические качества. Уравнения движения материальных тел или полей все еще принимают различный вид в "обычной" системе отсчета и в другой системе, равномерно вращающейся относительно "обычной" системы отсчета. Если ограничиваются теорией относительности 1905, 1906 годов, то существование, центробежных сил во вращающейся системе отсчета доказывает, что существуют физические свойства пространства, позволяющие отличить вращающиеся системы от не вращающихся.

В философском плане это не кажется удовлетворительным, и было бы предпочтительнее приписывать физические свойства только физическим объектам, как, например, материальным телам или полям, а не пустому пространству. Однако если ограничиться рассмотрением электромагнитных процессов и механических движений, то наличие этих свойств у пустого пространства следует просто из фактов, которые не могут быть оспорены, например из факта существования центробежной силы.

Решающая фундаментальная гипотеза общей теории относительности - предположение о тождестве тяготеющей и инертной масс. Весьма тщательные измерения показали, что масса тела, определяемая его весом, в точности пропорциональна другой массе, определяемой инерцией тела. Даже самые точные измерения никогда не давали никаких отклонений от этого закона. Если этот закон имеет универсальное значение, то силы тяготения могут быть поставлены в параллель с центробежными или другими силами, возникающими как реакция на инерционные воздействия. Так как центробежные силы должны быть поставлены в связь с физическими свойствами пустого пространства, как это показано выше, то Эйнштейн пришел к гипотезе о том, что силы тяготения также соответствуют свойствам пустого пространства. Это был очень важный шаг, который тотчас же сделал необходимым новый шаг в том же направлении. Мы знаем, что силы тяготения вызываются массами. Поэтому если тяготение связано со свойствами пространства, то эти свойства пространства должны быть порождены массой или испытывать воздействия масс. Центробежные силы во вращающейся системе отсчета, возможно, должны вызываться вращением относительно этой системы весьма удаленных масс вселенной.

Чтобы провести в жизнь программу, намеченную в этих утверждениях, Эйнштейн должен был связать эти основополагающие физические соображения с математической схемой общей геометрии, развитой Риманом. Так как свойства пространства, очевидно, непрерывно меняются с изменением гравитационных полей, то геометрия мира должна быть подобной геометрии искривленных поверхностей, на которых прямые линии евклидовой геометрии должны быть заменены геодезическими линиями, то есть линиями наименьшей длины, и кривизна непрерывно меняется от точки к точке. В качестве окончательного результата Эйнштейн смог предположить в конце концов математическую формулировку соотношения между распределением масс и параметрами, определяющими геометрию. Эта теория правильно отображает общеизвестные факты, характеризующие тяготение. Она в очень хорошем приближении идентична с обычной теорией тяготения и, кроме того, предсказывает некоторые очень интересные эффекты, лежащие как раз на границе возможностей измерительных приборов. К ним относится, например, влияние силы тяготения на излучение.

Лучшим экспериментальным доказательством справедливости общей теории относительности является, кажется, движение перигелия орбиты планеты Меркурий, величина которого, по-видимому, находится в очень хорошем согласии с предсказаниями теории.

Хотя, таким образом, экспериментальный базис общей теории относительности еще довольно узок, она, однако, содержит идеи огромнейшей степени важности. В течение всего времени развития математики от античности до XIX столетия евклидова геометрия рассматривалась как самоочевидная. Аксиомы Евклида имели отношение к основаниям любой математической теории геометрического характера и представляли собой базис, который не мог быть поставлен под сомнение. Затем в XIX столетии математики Больяй и Лобачевский, Гаусс и Риман нашли, что можно построить другие геометрии, которые могут быть развиты с той же математической строгостью, что и евклидова. Поэтому вопрос о том, какая геометрия является справедливой, с этого времени становится эмпирическим. И только в трудах Эйнштейна этот вопрос смог быть поставлен как физический. Геометрия, о которой идет речь в общей теории относительности, включает в себя не только геометрию трехмерного пространства, но и четырехмерное многообразие пространства и времени. Теория относительности устанавливает связь между геометрией этого многообразия и распределением масс во вселенной. Значит, эта теория поднимает в новой форме старые вопросы пространства и времени в случае очень больших расстояний, и она предполагает ответы, которые могут быть проверены наблюдениями.

Следовательно, можно снова поставить очень старые философские вопросы, занимавшие человеческий разум со времени самых ранних эпох философии и науки: конечно или бесконечно пространство? Что было до начала времени? Что будет в конце времени? Или у времени нет ни начала, ни конца? Эти вопросы нашли различные ответы в различных религиях и философских системах. В философии Аристотеля, например, все пространство вселенной представлялось как конечное, хотя оно и было бесконечно делимо. Пространство возникает благодаря протяженности тел, оно в известном смысле растягивается телами. Поэтому там, где нет никаких тел, нет и пространства. Вселенная состоит из Земли, Солнца и звезд - конечного числа тел. По ту сторону сферы неподвижных звезд нет никакого пространства. Поэтому пространство вселенной и было конечным. В философии Канта этот вопрос принадлежал к тому, что он назвал "антиномиями", - к числу вопросов, на которые нельзя ответить, так как два различных доказательства ведут к взаимно противоположным выводам. Пространство не может быть конечным, потому что мы не можем себе представить "конец" пространства. И какой бы точки пространства мы ни достигли, мы всегда представляем себе, что можем двигаться еще дальше. Но пространство не может быть и бесконечным, потому что пространство - это нечто, что мы можем себе представить, иначе понятия пространства не возникло бы вовсе, а мы не можем представить себе бесконечное пространство в отношении этого второго утверждения доказательство Канта нельзя передать дословно. Утверждение "пространство бесконечно" означает для нас нечто негативное: мы не можем дойти до "конца" пространства. Для Канта, однако, бесконечность пространства означает нечто действительно данное, нечто, что "существует" в смысле, который мы едва ли можем выразить. Кант приходит к выводу, что на вопрос о том, конечно или бесконечно пространство, нельзя дать никакого рационального ответа, потому что вселенная в целом не может быть предметом нашего опыта.

Подобное же положение возникает и относительно проблемы бесконечности времени. В исповеди Августина, например, вопрос поставлен в следующей форме: "Что делал бог до того, как он создал мир?" Августин не был удовлетворен известным ответом: "Бог был занят тем, что создавал ад для людей, задающих глупые вопросы". Это был бы слишком дешевый ответ, полагает Августин; и он пытается рационально проанализировать проблему: только для нас время течет, только мы ожидаем его как будущее, оно протекает для нас как настоящее мгновение, и мы вспоминаем о нем, как о прошлом. Но бог не находится во времени. Тысяча лет для него - что один день, и один день - что тысяча лет. Время было создано вместе с миром, оно, стало быть, принадлежит миру, и поэтому в то время, когда не существовало вселенной, не было и никакого времени. Для бога весь ход событий во вселенной был дан сразу. Значит, не было никакого времени до того, как мир был создан богом.

Правда, легко понять, что в подобных формулировках понятие "создан" тотчас же приводит к существенным трудностям. Это слово, в том виде как оно обычно употребляется, означает нечто, что возникает и чего ранее не существовало, и в этом смысле оно уже предполагает понятие времени. Поэтому в рациональных выражениях невозможно дать определение того, что можно понимать под оборотом речи "время было создано". Это обстоятельство снова напоминает нам часто обсуждаемый урок, который необходимо извлечь из новейшего развития физики, а именно: что всякое слово или всякое понятие, каким бы ясным оно нам ни казалось, имеет все-таки только ограниченную область применения.

Эти вопросы о бесконечности пространства и времени могут быть в общей теории относительности поставлены и отчасти - на основании эмпирического материала - решены. Если теория правильно описывает связь четырехмерной геометрии пространства и времени с распределением масс во вселенной, то астрономические наблюдения о распределении спиральных туманностей в пространстве могут дать нам информацию о геометрии вселенной. Тогда можно будет построить по крайней мере модели вселенной, космологические картины, следствия которых могут быть сравнены с эмпирическими фактами.

Что касается времени, то здесь, кажется, что-то вроде "начала" имело место. Многие наблюдения указывают на то, что вселенная около 4 миллиардов лет назад имела "начало" или, во всяком случае, что в то время материя вселенной была сконцентрирована в значительно меньшем объеме пространства, чем сейчас, и что с того времени вселенная все еще продолжает расширяться из этого небольшого объема с различными скоростями. Это одно и то же время в 4 миллиарда лет все снова и снова появляется во многих различных наблюдениях, например возраста метеоритов, минералов на Земле и т. д., и поэтому было бы, вероятно, затруднительно найти этому объяснение, совершенно отличное от идеи возникновения мира 4 миллиарда лет назад. Если идея "возникновения" в этой форме окажется правильной, то это будет означать, что по ту сторону указанного момента времени - то есть ранее чем 4 миллиарда лет назад - понятие времени должно претерпеть существенные изменения. Это более осторожное заключение становится на место простой формулировки о создании мира. При современном состоянии астрономических наблюдений эти вопросы геометрии пространства-времени еще не могут быть решены с какой-нибудь степенью надежности. Но уже довольно интересно знать, что эти вопросы, возможно, позднее смогут быть решены в один прекрасный момент на прочной основе астрономических знаний.

Даже если дальнейшее рассмотрение ограничить более надежно обоснованной специальной теорией относительности, то можно не сомневаться, что эта теория в огромной степени изменила наши представления о структуре пространства и времени. Беспокоит в этих изменениях, пожалуй, не столько их особенная природа, сколько тот факт, что они вообще оказались возможны. Структура пространства и времени, которую Ньютон математически установил в качестве основы своего описания природы, не содержала никаких внутренних противоречий, была проста и очень точно соответствовала употреблению понятий пространства и времени, к которому мы привыкли в повседневной жизни. Соответствие фактически было столь близким, что Ньютоновские определения можно было рассматривать просто как точную математическую формулировку этих понятий пространства и времени повседневной жизни. До теории относительности считалось само собой разумеющимся, что процессы могут быть упорядочены во времени независимо от их расположения в пространстве. Мы знаем, что в повседневной жизни это впечатление возникает потому, что скорость света значительно больше каких угодно других скоростей, с которыми имеют дело в повседневной жизни. В то время это ограничение, естественно, никто не представлял себе отчетливо. Но даже при условии, что сейчас мы знаем об этом ограничении, едва ли можно себе представить, что порядок событий во времени должен зависеть от их пространственного расположения, то есть от места, в котором они происходят.