Предельная температура окружающей среды. Температура окружающей среды

10.4. Терморегуляция. Температура тела и изометрия

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии. Изотермия в процессе онтогенеза развивается постепенно. У новорожденного способность поддерживать постоянство температуры тела не совершенна. В результате может наступить охлаждение или перегревание организма при таких температурах окружающей среды, которые не оказывают влияния на взрослого человека. Даже небольшая мышечная работа, связанная с длительным криком ребенка, может повысить температуру тела.

Температура органов и тканей, как и всего организма, зависит от интенсивности образования тепла и от теплопотерь. Теплообразование происходит в результате непрерывно совершающихся экзотермических реакциях. В тканях и органах, производящих активную работу (мышечная ткань, печень, почки), выделяется большее количество тепла, чем в менее активных (соединительные ткани, кости, хрящи).

Потеря тепла органами и тканями зависит от месторасположения: поверхностно расположенные органы (кожа, скелетные мышцы) отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения. Печень, расположенная глубоко внутри тела и дающая большую теплопродукцию, имеет у человека более высокую и постоянную температуру (37,8 - 38 °С), температура кожи в большей мере зависит от окружающей среды.

О температуре тела человека судят на основании ее измерения в подмышечной впадине. Здесь температура у здорового человека рав­на 36,5 -36,9°С. Температура тела не остается постоянной, а колеб­лется в пределах 0,5 – 0,7°С. Покой и сон понижает температуру, мышечная деятельность повышает ее. Максимальная температура тела наблюдается в 4 - 6 часов вечера, минимальная - в 3 - 4 часа утра.

Постоянство температуры тела у человека может сохраняться при условии равенства теплообразования и потери тепла всего организма. Это достигается с помощью физиологических механизмов тер­морегуляции. Терморегуляцию принято разделять на химическую и физическую.

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т.е. усиления или ослабления интенсивности обмена веществ в клетках организма.

Химическая терморегуляция ведет к повышению или понижению образования тепла в организме. Суммарная теплопродукция в организме складывается из первичной теплоты, выделяющейся в ходе постоянно протекающих во всех тканях реакций обмена веществ; и вторичной теплоты, образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Интенсивность метаболических процессов неодинакова в различных органах и тканях, поэтому их вклад в общую теплопродукцию неравнозначен. Образование тепла в мышцах при напряжении и сокращении получило название сократительного термогенеза. Сократительный термогенез является основным механизмом дополнительного теплообразования у взрослого человека. У новорожденного имеется механизм ускоренного теплообразования за счет возрастания скорости окисления жирных кислот бурого жира, кото­рый расположен в межлопаточной области, вдоль крупных сосудов грудной и брюшной полостей, в затылочной области шеи. Оттенок бурого цвета придают многочисленные окончания симпатических нервных волокон и митохондрии, содержащиеся в клетках этой ткани. Масса бурой жировой ткани достигает у взрослого 0,1% массы тела. У детей содержание бурого жира больше, чем у взрослых. В бурой жировой ткани образуется значительно большее количество тепла, чем в белой жировой ткани. Этот механизм термообразования получил название несократительного термогенеза.

Физическая терморегуля­ция осуществляется путем изменения интенсивности отдачи тепла.

Физическая терморегуляция - это совокупность физиологичес­ких процессов, ведущих к изменению уровня теплоотдачи.

Излучение - это отдача тепла в виде электромагнитных волн инф­ракрасного диапазона. Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тех частей тела, которые соприкасаются с воздухом) и разности средних значений температур кожи и окружающей среды. При температуре окружающей среды 20°С и относительной влажности воздуха 40 - 60% организм взрослого человека рассеивает путем излучения около 40 - 50% всего отдаваемого тепла.

Излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если температура окружающей среды повышает температуру кожи, тело человека согре­вается, поглощая инфракрасные лучи, выделяемые средой.

Теплопроведение (кондукция) - отдача тепла при непосредственном соприкосновении тела с другим физическим объектом. Сухой воздух и жировая ткань являются теплоизоляторами. Влажный, насыщенный водяными порами воздух и вода имеют высокую теплопроводность. Поэтому пребывание при низкой температуре с высокой влажностью сопровождается усилением теплопотерь организма.

Конвекция - теплоотдача, осуществляемая путем переноса тепла движущимися частицами воздуха (воды). Для рассеивания тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой. При температуре воздуха 20°С, относительной влажности - 40 - 60 % тело взрослого человека рассеивает в окружающую среду путем теплопроведения и конвекции около 25 - 30 % тепла.

Испарение - это отдача тепла за счет испарения пота или влаги с поверхности кожи и слизистых оболочек дыхательных путей. При температуре 20°С испарение составляет около 36 г/час. Путем испарения организм отдает около 20 % тепла. Испарение возможно до тех пор, пока влажность воздуха меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха капельки пота, не успевая испариться, стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной. Потоотделение использует затраты энергии. Некоторые животные не имеют механизма потоотделения - это не потеющие животные. Они заменяют потоотделение тепловой одышкой (полипноэ). Тепловая одышка протекает в виде сильно учащенного, но поверхностного дыхания. Такой тип дыхания увеличивает испарение воды с поверхности верхних дыхательных путей, полости рта и языка.

Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление. Информация о температуре приходит от периферических и центральных терморецепторов по афферентным нервам к центру терморегуляции в гипоталамусе. Этот центр обрабатывает информацию и посылает команды эффекторам, т.е. активирует различные механизмы, которые обеспечивают изменение теплопродукции и теплоотдачи.

Функции терморецепторов выполняют специализированные клетки, имеющие особо высокую чувствительность к температурным воздействиям. Они расположены в различных частях тела (кожа, ске­летные мышцы, кровеносные сосуды, желудок, кишечник, матка, мочевой пузырь), в дыхательных путях, в спинном мозге, ретикулярной формации, среднем мозге, гипоталамусе, коре больших полушарий.

Выделяют три группы терморецепторов:

1) экстерорецепторы располагаются в коже;

2) интерорецепторы, расположенные на внутренних органах и сосудах;

3) центральные терморецепторы располагаются в центральной нервной системе.

Наиболее изучены терморецепторы кожи. Больше всего их на коже лица и шеи. Кожные терморецепторы делятся на 1) холодовые и 2) тепловые. На поверхности тела количественно преобладают холодочувствитсльные терморецепторы. Холодовые рецепторы располагаются на глубине 0,17 мм от поверхности кожи, их около 250 тыс. Тепловые рецепторы находятся глубже и располагаются на глубине 0,3 мм от поверхности, их около 30 тыс.

Разряды тепловых рецепторов наблюдаются в диапазоне темпе­ратур от 20 до 50 °С, а холодовых - от 10 до 41 °С. При температуре ниже 10 °С холодовые рецепторы и нервные волокна блокируются. При температуре выше 45 °С холодовые рецепторы могут вновь ак­тивироваться, что объясняет феномен парадоксального ощущения холода, наблюдаемый при сильном нагревании. При температуре 47 - 48 °С начинают возбуждаться также болевые рецепторы. Это объясняет необычную остроту парадоксального ощущения холода.

Возбуждение рецепторов зависит от абсолютных значений температуры кожи в месте раздражения и от скорости и степени ее изменения.

Центры терморегуляции . Общепринято, что основной центральный механизм терморегуляции (центр терморегуляции) локализован в гипоталамусе. Гипоталамический терморегуляторный механизм заключается в следующем. Сигнализация от периферических терморецепторов, переключаясь в структурах задних рогов спинного мозга, адресуется к сегментарным соматическим и автономным механизмам спинального уровня, а также поступает по восходящим путям спинного мозга в головной мозг. Главными проводниками температурной чувствительности в головной мозг являются спиноталамический и спиноретикулярный тракты.

Сигналы от периферических терморецепторов адресуются в передний гипоталамус (медиальную преоптическую область), где происходит сравнение этих сигналов с уровнем активности центральных термосенсоров (они отражают температурное состояние мозга). Интеграция сигналов, характеризующих центральную и периферическую температуру тела обеспечивает выработку структурами заднего гипоталамуса импульсов, управляющих химической и физической терморегуляцией.

В комфортных условиях тепловой баланс, обеспечивающий поддержание температуры тела на нормальном уровне, не нуждается в коррекции специальными механизмами терморегуляции.

Кора больших полушарий, участвуя в переработке температурной информации, обеспечивает условнорефлекторную регуляцию теплопродукции и теплоотдачи. Сильные терморегуляторные реакции вызывают природные условные раздражители (вид снега, льда, яркое солнце и другие). Кора головного мозга и лимбическая система обеспечивают возникновение субъективных температурных ощущений (холодно, прохладно, тепло, жарко), мотивационных возбуждений и поведения, направленного на поиск более комфортной среды. В гипоталамусе расположены нейроны, управляющие процессами теплоотдачи и теплопродукции. Термочувствительные нервные клетки способны различать разницу температуры в 0,01 °С крови, протекающей через мозг.

Имеются данные о том, что соотношение в гипоталамусе кон­центраций ионов натрия и кальция определяет уровень температу­ры. Изменение концентраций этих ионов приводит к изменениям уровня температуры тела.

В терморегуляции принимают участие и гуморальные факторы. Тироксин усиливает окислительные процессы, что сопровождается увеличением теплообразования. Адреналин суживает периферические сосуды, что приводит к снижению теплоотдачи.

Температурная адаптация . Продолжительное пребывание в перегревающих или переохлаждающих условиях микроклимата приводит к повышению эффективности механизмов защиты от перегревания или от переохлаждения. Тепловая адаптация сводится к повышению эффективности механизма потоотделения, что достигается за счет повышения чувства жажды при незначительных потерях воды и снижения порога потоотделения на перегревание. Холодовая адаптация заключается в увеличении теплоизолирующих свойств кожи и накопления подкожного жира, а также в фоновом повышении тканевого энергообмена за счет увеличения количества тканевых β-адренорецепторов.

Температура окружающей среды ниже комфортной вызывает увеличение активности холодовых периферических терморецепторов. Эта информация повышает тонус эфферентных структур заднего гипоталамуса, в результате чего через активацию симпатической нервной системы повышается тонус кожных и подкожных сосудов. Уменьшение кровотока, связанное с повышением тонуса сосудов, приводит к повышению термоизоляции организма и сохранению теплоты за счет уменьшения теплоотдачи. Параллельно возникновению реакции теплоконсервации эфферентные структуры заднего гипоталамуса активируют появление терморегуляционного тонуса и дрожи. Согревание уменьшает активность холодовых периферических терморецепторов, вызывая уменьшение тонуса эфферентных структур гипоталамуса. В результате про­исходит уменьшение симпатических влияний на кожные и подкожные сосуды, уменьшается адренэргическая и тиреоидная активация энергообмена. Снижение эфферентных влияний центра терморегуляции вызывает уменьшение мышечного тонуса.

Температура является важным и часто лимитирующим фактором среды. Распространение различных видов существенно зависят от температуры. С чем это связано и каковы причины такой зависимости?

· Ведущая роль в формировании температуры принадлежит энергии радиационного балланса, а именно той его части, которая идет на нагревание экосистемы (Н).

· Вторым фактором является температура на верхней границе атмосферы, определяющая вторжение теплых или холодных воздушныых масс .

Диапазон температур, которые зарегистрированы во Вселенной, равен тысяче градусов, но пределы обитания живых существ на Земле значительно уже: чаще всего от - 200°С до + 100 °С.

При экологических исследованиях наиболее широко используются такие показатели как: средняя, минимальная, максимальная температура за определенный период.

Следует также рассмотреть паказатели контрастности, вариабельности и предсказуемости хода температур.

· Наибольшее действие на организмы оказывает суточный ход температур.

· Вариабельность показывает распределение температуры внутри максимума и минимума. Показателем вариабельности является среднеквадратичное отклонение всех месячных температур, от средней многолетней.

· Низкая предсказуемость –когда слабо выражен многолетний ход, но высока вариабельность в отдельные годы.

· Высокая предсказуемость – наиболее ровный температурный режим. При этом все варьирование содержится уже в среднемноголетнем ходе температур, а месячные температуры почти не отличаются от многолетних средних.

· Наименьшей контрастностью, вариабельностью и наибольшей предсказуемостью характеризуется тропический лес.

· Наибольшей контрастностью, вариабельностью и малой предсказуемостью – температурный режим тундры.

Приспособление к суточным контрастам температур требует физиологических механизмов, а также определяет ритм суточной активности животных.

Протоплазмы клеток всех живых организмов способны жить лишь при температуре между от 0° и 50 0 .

Животные менее стойки. По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные , т.е. способные переносить колебание температуры в широких пределах или узких пределах.

В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы:

· криофиллы - организмы, приспособленные к холоду, к низким темпера турам;

· термофилы - или теплолюбивые.

Диапазон толерантности у наземных животных в целом больше, чем у водных (не считая микроорганизмов). Изменчивость температуры, временная и пространственная, является мощным экологическим фактором среды. Живые организмы приспосабливаются к различным температурным условиям; одни могут жить при постоянной или относительно постоянной температуре, другие лучше адаптированы к колебаниям температуры.

Воздействие температурного фактора на организмы сводится к его влиянию на скорость обмена веществ. Если исходить из правила Вант-Гоффа для химических реакций, то следует заключить, что повышение температуры вызовет пропорциональное возрастание скорости биохимических процессов обмена веществ.

При анализе взаимосвязей между организмами и температурой окружающей среды все организмы делят на два типа: гомойотермных и пойкилотермных . Такое разделение относится к животному миру; иногда животных подразделяют на теплокровных и холоднокровных (см. предыдущую лекцию )

1. Причиной гибели организма при высоких температурах является нарушение гомеостаза и интенсивности обмена веществ, денатурация белков и инактивация ферментов, обезвоживание.

2. Необратимые нарушения структуры белков возникают при температуре около 60°С. Именно таков порог "тепловой смерти" у ряда простейших и некоторых низших многоклеточных организмов.

3. Адаптации к изменению температур выражаются у них в образовании таких форм существования, как цисты, споры, семена. У животных "тепловая смерть" наступает раньше, чем происходит денатурация белков, вследствие нарушений деятельности нервной системы и других регуляторных механизмов.

4. При низких температурах обмен замедляется или даже приостанавливается, происходит образование кристаллов льда внутри клеток, что приводит к их разрушению, повышению внутриклеточной концентрации солей, нарушению осмотического равновесия и денатурации белков.

5. Морозоустойчивые растения выдерживают полное зимнее промерзание благодаря ультраструктурным перестройкам, направленным на обезвоживание клеток. Семена выдерживают температуры, близкие к абсолютному нулю.

В целом, температура может оказывать двоякое воздействие на организм:

1. Прямое воздействие – увеличение скорости обменных процессов (у пойкилотермных животных). Это определяет окраску насекомых (северные более темные).

2. Косвенное воздействие – воспринимается рецепторами. При этом животное находит более комфортную зону (передвижение хлопковой тли в течение суток по хлопчатнику).

3. Температура определяет тип активности животного (например, ползанье и разные типы полета).

Механизмы препятствующие холодовой смерти у насекомых:

1. Обезвоживание организма на 20-30% от исходного.

2. Связывание воды каллоидами.

3. Увеличение содержания жира.

4. Увеличение гликогена, являющегося гидрофильным каллоидом.

5. Увеличение концентрации растворенных веществ (1 моль на 1 литр понижает температуру замерзания на 2º С).

6. Увеличение концентрации глицерина (затем превращается в гликоген).

Механизмы препятствующие тепловой смерти насекомых:

1. Избегание нагретых участков благодаря действию терморецепторов).

2. Испарение влаги с поверхности (работает только при низкой влажности).

3. Размазываение по телу капель жидкости.

Человеческое тело постоянно потребляет калории и переводит их в энергию. Так как мы - не вечный двигатель, КПД у потребления калорий у нас не 100%, часть уходит в выделение тепла, то есть нагрев тела.

Комфортная температура окружающей среды для каждого индивидуальна, но варьируется в пределах от 15 до 25 градусов по Цельсию. Почему не 36,6? Потому что телу необходимо охлаждение. Оно будет происходить, если температура окружающей среды ниже температуры тела на определённое количество градусов (зависит от количества выделяемого тепла). В противном случае пойдёт нагрев и перегрев тела => тепловой удар.

Поэтому, чем больше мы потребляем энергии, тем жарче нам становится. И, следовательно, тем холоднее нам нужна окружающая среда. Людям с ускоренным обменом веществ жарко даже при 20-ти градусах, например, а некоторым холодно и в 25 градусов.

Если температура окружающей среды не способна принять на себя излишки тепла (пробежка по тридцатиградусной жаре), то организм прибегает к «тяжёлой технике» - потоотделению. Это один из способов терморегуляции. Если вы будете бежать в лёгкой одежде по зимнему морозу, то едва вспотеете. А вот переохладиться можете.

Добавлю ещё сюда то, что ощущение температуры, помимо личных предпочтений, может варьироваться как из-за разных климатических условий, вроде ветра, атмосферного давления и влажности воздуха, так и от физических качеств среды - то есть её теплоёмкости.

Чем больше теплоёмкость, тем холоднее нам кажется вещество по сравнению с другим, ровно такой же температуры. у воды теплоёмкость больше, чем у воздуха, поэтому температура воздуха в 20 градусов для нас приемлема, а 20 градусов в воде - слишком холодно. Железо имеет ещё бОльшую теплоёмкость, поэтому реально получить обморожение только из-за плотного прикосновения к железному столбу на морозе.

Если смешать лёд с солью, у них будет большая теплоёмкость, поэтому, зажав эту смесь в руке, можно получить переохлаждение и травму конечности. Об этом .

Нам холодно становится не тогда, когда температура снаружи становится меньшей температуры поверхности тела, и жарко не тогда, когда воздух теплее чем кожа. Из-за этого во многих ответах ниже закралась ошибка.

Все потому что человек - теплокровный, и пока живет, выделяет тепло. При этом для поддержания постоянной температуры тела рассеиваться (забираться, отдаваться окружающей среде, воздуху) тепла должно ровно столько же сколько и вырабатывается.

А если температура внешней среды и температура тела равны, нет разницы температур, тогда теплообмена практически не будет и выделяемая нами энергия пойдет на наш нагрев, что приведет к перегреву, тепловому удару и прочим неприятным вещам, и может быть опасно. Именно потому должна быть именно разница температур - чтобы наше тело могло спокойно избавляться от излишков тепла, чтобы количество отдаваемого нами тепла было равным количеству вырабатываемого и наш организм мог поддерживать постоянную нужную температуру. Ведь тепло передается от более нагретых к менее нагретым телам и со скоростью, пропорциональной разнице температур. А передавать его нам нужно предостаточно, пока мы живы.

Когда на улице +30 то разницы температур в 6-7 градусов недостаточно чтобы отдавать в воздух нужное количество тепла, потому в ход идут специальные механизмы - потовыделение (испарение отбирает много тепла) и прочие, которые приводят к обезвоживанию и жажде и в общем слишком долго наш организм в таком режиме работать не приспособлен потому и подает сигнал " жарко, найди где охладиться!" Правда тут еще не все учтено, комфортная температура зависит от влажности воздуха, ветрености, солнечности, наличии одежды / волосяного покрова, а так же комплекции и особенностей организма человека. Но эта комфортная температура для теплокровных животных всегда ниже температуры тела - должна быть разница температур чтобы выделяемое тепло могло покинуть наше тело а не перегревать его.

Не специалист. Но температура ПОВЕРХНОСТИ тела ниже; почему градусник и надо держать подмышкой и тщательно. Или в полостях. Температура поверхности рук-ног, кажется, порядка 24 градусов (могу путать).

Впрочем, наверняка это только часть ответа.

Человеческое тело вырабатывает очень много тепла. Правильная температура для правильной работы организма 36,6. Чем больше температура извне - тем сложнее охлаждать организм. Ведь количество тепла вырабатываемое организмом не падает, а отдавать температуру все сложнее. Организм перенагревается и как следствие -- тепловой удар.

Человек, как известно, относится к гомойотермным, или теплокровным, организмам. Означает ли это, что температура его тела постоянна, т.е. организм не реагирует на изменения температуры окружающей среды? Реагирует, и даже очень чутко. Постоянство температуры тела – это, собственно, и есть результат непрерывно происходящих в организме реакций, поддерживающих неизменным его тепловой баланс.

С точки зрения обменных процессов, выработка тепла – это побочный эффект химических реакций биологического окисления, в ходе которых поступающие в организм питательные вещества – жиры, белки, углеводы – претерпевают превращения, заканчивающиеся образованием воды и углекислого газа. Такие же реакции с высвобождением тепловой энергии происходят и в организмах пойкилотермных, или холоднокровных, животных, но из-за значительно более низкой их интенсивности температура тела у пойкилотермных лишь незначительно превышает температуру окружающей среды и изменяется в соответствии с последней.

Все протекающие в живом организме химические реакции зависят от температуры. И у пойкилотермных животных интенсивность процессов превращения энергии, согласно правилу Вант-Гоффа*, возрастает пропорционально внешней температуре. У гомойотермных животных эта зависимость замаскирована другими эффектами. Если гомойотермный организм охладить ниже комфортной температуры окружающей среды, интенсивность обменных процессов и, следовательно, выработка тепла у него возрастают, предотвращая понижение температуры тела. Если терморегуляцию у этих животных блокировать (например, при наркозе или повреждении определенных участков ЦНС), кривая зависимости теплопродукции от температуры будет такой же, как и для пойкилотермных организмов. Но даже в этом случае сохраняются существенные количественные различия между обменными процессами у пойкилотермных и гомойотермных животных: при данной температуре тела интенсивность обмена энергии в расчете на единицу массы тела у гомойотермных организмов по меньшей мере в 3 раза превышает интенсивность обмена у пойкилотермных организмов.

Многие животные, из тех, что не относятся к млекопитающим и птицам, способны в некоторой степени менять температуру тела при помощи «поведенческой терморегуляции» (например, рыбы могут заплывать в более теплую воду, ящерицы и змеи – принимать «солнечные ванны»). Истинно гомойотермные организмы способны использовать как поведенческие, так и автономные способы терморегуляции, в частности у них может при необходимости вырабатываться дополнительное тепло за счет активации обмена веществ, тогда как другие организмы вынуждены ориентироваться на внешние источники тепла.

Теплопродукция и размеры тела

Температура большинства теплокровных млекопитающих лежит в диапазоне от 36 до 40 °С, несмотря на значительные различия в размерах тела. В то же время интенсивность метаболизма (М) зависит от массы тела (m) как ее показательная функция: M = k x m 0,75 , т.е. величина М/m 0,75 одна и та же для мыши и для слона, хотя у мыши интенсивность метаболизма на 1 кг массы тела значительно больше, чем у слона. Этот так называемый закон снижения интенсивности обмена веществ в зависимости от массы тела отражает то, что теплопродукция соответствует интенсивности теплоотдачи в окружающее пространство. Для данной разницы температур между внутренней средой организма и окружающей средой потери тепла на единицу массы тела оказываются тем больше, чем больше соотношение между поверхностью и объемом тела, причем последнее соотношение уменьшается с увеличением размеров тела.

Температура тела и тепловой баланс

Когда для поддержания постоянства температуры тела требуется дополнительное тепло, оно может быть выработано за счет:

1) произвольной двигательной активности;
2) непроизвольной ритмической мышечной активности (дрожь, вызванная холодом);
3) ускорения обменных процессов, не связанных с сокращением мышц.

У взрослого человека дрожь – наиболее важный непроизвольный механизм термогенеза. «Недрожательный термогенез» встречается у новорожденных животных и детей, а также у мелких, адаптированных к холоду животных и у животных, впадающих в зимнюю спячку. Главным источником «недрожательного термогенеза» служит так называемый бурый жир – ткань, характеризующаяся избытком митохондрий и «мультилакулярным» распределением жира (многочисленные мелкие капельки жира, окруженные митохондриями). Эта ткань обнаруживается между лопатками, в подмышечных впадинах и в некоторых других местах.

Чтобы температура тела не изменялась, теплопродукция должна равняться теплоотдаче. По закону охлаждения Ньютона отданное телом тепло (за вычетом потерь, связанных с испарением) пропорционально разности температур между внутренней частью тела и окружающим пространством. У человека теплоотдача равна нулю при температуре окружающей среды 37 °С, а при понижении температуры она возрастает. Теплоотдача зависит также от проведения тепла внутри организма и периферического кровотока.

Термогенез, связанный с обменом веществ в условиях покоя (рис. 1), уравновешивается процессами теплоотдачи в зоне температур окружающей среды Т 2 –Т 3 , если кожный кровоток постепенно уменьшается по мере снижения температуры от Т 3 до Т 2 . При температуре ниже Т 2 постоянство температуры тела может поддерживаться только при усилении термогенеза пропорционально потерям тепла. Наибольшая выработка тепла, обеспечиваемая этими механизмами, у человека соответствует уровню метаболизма, в 3–5 раз превышающему интенсивность основного обмена, и характеризует нижнюю границу диапазона терморегуляции T 1 . В случае выхода за эту границу развивается гипотермия, которая может привести к смерти от переохлаждения.

При температуре окружающей среды выше Т 3 температурное равновесие могло бы сохраняться за счет ослабления интенсивности обменных процессов. На самом деле, температурный баланс устанавливается за счет дополнительного механизма теплоотдачи – испарения выделяющегося пота. Температура Т 4 соответствует верхней границе диапазона терморегуляции, которая определяется максимальной интенсивностью выделения пота. При температуре среды выше Т 4 возникает гипертермия, которая может привести к смерти от перегрева. Температурный диапазон Т 2 –Т 3 , в пределах которого температура организма может поддерживаться на постоянном уровне без участия дополнительных механизмов теплопродукции или потоотделения, называется термонейтральной зоной . В этом диапазоне интенсивность метаболизма и теплопродукция по определению минимальны.

Температура тела человека

Тепло, вырабатываемое организмом в норме (т.е. в условиях равновесия), отдается в окружающее пространство поверхностью тела, поэтому температура частей тела вблизи его поверхности должна быть ниже температуры его центральных частей. В связи с неправильностью геометрических форм тела распределение температуры в нем описывается сложной функцией. Например, когда легко одетый взрослый человек находится в помещении с температурой воздуха 20 °С, температура глубокой мышечной части бедра составляет 35 °С, глубоких слоев икроножной мышцы 33 °С, в центре стопы температура составляет лишь 27–28 °С, а ректальная температура равна примерно 37 °С. Колебания температуры тела, вызванные изменениями внешней температуры, наиболее выражены вблизи поверхности тела и на концах конечностей (рис. 2).

Рис. 2. Температура различных областей тела человека в условиях холода (А) и тепла (Б)

Внутренняя температура тела сама по себе не является постоянной ни в пространственном, ни во временном отношении. В термонейтральных условиях различия температур во внутренних областях тела составляют 0,2–1,2 °С; даже в головном мозге разница температур между центральной и наружной частями достигает более 1 °С. Наиболее высокая температура отмечается в прямой кишке, а не в печени, как считалось раньше. На практике обычно представляют интерес изменения температуры во времени, поэтому ее измеряют на каком-либо одном определенном участке.

Для клинических целей предпочтительнее измерять ректальную температуру (термометр вводят через анальное отверстие в прямую кишку на стандартную глубину 10–15 см). Оральная, точнее подъязычная, температура обычно на 0,2–0,5 °С ниже ректальной. На нее влияет температура вдыхаемого воздуха, пищи и питья.

При исследованиях в спортивной медицине часто измеряют пищеводную температуру (над входом в желудок), которую регистрируют с помощью гибких термодатчиков. Такие измерения отражают изменения температуры тела быстрее, чем регистрация ректальной температуры.

Подмышечная температура также может служить показателем внутренней температуры тела, поскольку, когда рука плотно прижата к грудной клетке, температурные градиенты смещаются так, что граница внутреннего слоя доходит до подмышечной впадины. Однако для этого необходимо некоторое время. Особенно после нахождения на холоде, когда поверхностные ткани были охлаждены и в них произошло сужение сосудов (это особенно часто бывает при простуде). В этом случае для установления теплового равновесия в этих тканях должно пройти около получаса.

В некоторых случаях внутреннюю температуру измеряют в наружном слуховом проходе. Это делают при помощи гибкого датчика, который помещают вблизи барабанной перепонки и предохраняют от внешних температурных влияний при помощи ватного тампона.

Обычно для определения температуры поверхностного слоя тела измеряют температуру кожи. В этом случае измерение в одной точке дает неадекватный результат. Поэтому на практике обычно измеряют среднюю температуру кожи в области лба, груди, живота, плеча, предплечья, тыльной стороны ладони, бедра, голени и дорсальной поверхности стопы. При вычислениях учитывают площадь соответствующей поверхности тела. Найденная таким способом «средняя температура кожи» при комфортной температуре окружающей среды составляет примерно 33–34 °С.

Периодические колебания средней температуры

Температура тела человека колеблется в течение дня: она минимальна в предутренние часы и максимальна (часто с двумя пиками) в дневное время (рис. 3). Амплитуда суточных колебаний составляет примерно 1 °С. У животных, активных в ночное время, температурный максимум отмечается ночью. Проще всего было бы объяснить эти факты тем, что увеличение температуры происходит в результате усиления физической активности, однако такое объяснение оказывается неверным.

Колебания температуры – один из многих суточных ритмов. Даже если исключить все ориентирующие внешние сигналы (свет, температурные изменения, часы приема пищи), температура тела

продолжает колебаться ритмически, но период колебаний в этом случае составляет от 24 до 25 ч. Таким образом, суточные колебания температуры тела основаны на эндогенном ритме («биологические часы»), обычно синхронизованном с внешними сигналами, в частности с вращением Земли. Во время путешествий, связанных с пересечением земных меридианов, обычно требуется 1–2 недели для того, чтобы температурный ритм пришел в соответствие с жизненным укладом, определяемым новым для организма местным временем.

На ритм суточных изменений температуры накладываются ритмы с более продолжительными периодами, например температурный ритм, синхронизованный с менструальным циклом.

Изменение температуры при физической нагрузке

Во время ходьбы, например, выработка тепла в 3–4 раза, а при напряженной физической работе даже в 7–10 раз выше, чем в состоянии покоя. Увеличивается она и в первые часы после приема пищи (примерно на 10–20%). Ректальная температура во время марафонского бега может достигать 39–40 °С, а в некоторых случаях – почти 41 °С. А вот средняя температура кожи снижается за счет вызванного нагрузкой потоотделения и испарения. Во время работы с субмаксимальной нагрузкой, пока происходит выделение пота, повышение внутренней температуры почти не зависит от окружающей температуры в диапазоне 15–35 °С. Обезвоживание тела приводит к подъему внутренней температуры и заметно снижает работоспособность.

Теплоотдача

Как же тепло, возникшее в недрах организма, покидает его? Частично с выделениями и с выдыхаемым воздухом, но роль главного охладителя играет кровь. Благодаря своей высокой теплоемкости кровь очень хорошо подходит для этой цели. Она забирает тепло у клеток омываемых ею тканей и органов и уносит его по кровеносным сосудам к коже и слизистым оболочкам. Здесь, в основном, и происходит отдача тепла. Поэтому оттекающая от кожи кровь примерно на 3 °С холоднее притекающей. Если организм лишить возможности удалять тепло, то всего лишь за 2 ч температура его повышается на 4 °С, а подъем температуры до 43–44 °С уже, как правило, несовместим с жизнью.

Передача тепла в конечностях до некоторой степени определяется тем, что кровоток здесь происходит по принципу противотока. Глубокие крупные сосуды конечностей располагаются параллельно, благодаря чему кровь, следующая по артериям на периферию, отдает свое тепло близлежащим венам. Таким образом, капилляры, расположенные на концах конечностей, получают предварительно охлажденную кровь, поэтому пальцы рук и ног наиболее чувствительны к пониженным температурам.

Слагаемыми теплоотдачи служат: проведение тепла Н п , конвекция Н к , излучение Н изл и испарение Н исп . Общий поток тепла определяется суммой этих компонентов:

Н нар = Н п + Н к + Н изл + Н исп .

Перенос тепла путем проведения происходит, когда тело соприкасается (в положении стоя, сидя или лежа) с плотным субстратом. Величина потока тепла определяется температурой и теплопроводностью прилежащего субстрата.

Если кожа теплее окружающего воздуха, прилегающий к ней слой воздуха нагревается, поднимается и замещается более холодным и плотным воздухом. Движущей силой этого конвективного потока служит разница между температурами тела и окружающей среды вблизи него. Чем больше движений возникает во внешнем воздухе, тем тоньше становится пограничный слой (максимальная толщина 8 мм).

Для диапазона биологических температур перенос тепла за счет излучения Н изл может быть описан с достаточной точностью при помощи уравнения:

Н изл = h изл x (T кожи – Т изл ) x А,

где T кожи – средняя температура кожи, Т изл – средняя температура излучения (температура окружающих поверхностей, например стен комнаты),
А – эффективная площадь поверхности тела и
h изл – коэффициент переноса тепла за счет излучения.
Коэффициент h изл учитывает излучающую способность кожи, которая для длинноволнового ИК-излучения равна примерно 1 независимо от пигментации, т.е. кожа излучает почти столько же энергии, сколько абсолютно черное тело.

Около 20% теплоотдачи тела человека в условиях нейтральной температуры осуществляется за счет испарения воды с поверхности кожи или со слизистых оболочек дыхательных путей. Теплоотдача путем испарения происходит даже при 100% относительной влажности окружающего воздуха. Это происходит до тех пор, пока температура кожи выше температуры окружающей среды и кожа полностью увлажнена благодаря достаточному выделению пота.

Когда температура окружающей среды превышает температуру тела, теплоотдача может осуществляться только путем испарения. Эффективность охлаждения за счет потоотделения очень высока: при испарении 1 л воды организм человека может отдать треть всего тепла, выработанного в условиях покоя за целый день.

Влияние одежды

Эффективность одежды как теплоизолятора обусловлена мельчайшими объемами воздуха в структуре плетеной ткани или в ворсе, в которых не возникают сколько-нибудь заметные конвективные потоки. В этом случае тепло переносится только путем проведения, а воздух является плохим проводником тепла.

Факторы окружающей среды и температурный комфорт

Влияние окружения на тепловой режим организма человека определяется по крайней мере четырьмя физическими факторами: температурой воздуха, влажностью, температурой излучения и скоростью движения воздуха (ветра). От этих факторов зависит, ощущает ли испытуемый «температурный комфорт», жарко ему либо холодно. Условие комфорта состоит в том, чтобы организм не нуждался в работе механизмов терморегуляции, т.е. ему не требовалось бы ни дрожи, ни выделения пота, а кровоток в периферических органах мог сохранять промежуточную скорость. Это условие соответствует упомянутой выше термонейтральной зоне.

Указанные четыре физических фактора до некоторой степени взаимозаменяемы в отношении ощущения комфорта и потребности в терморегуляции. Иными словами, ощущение холода, вызванное низкой температурой воздуха, может быть ослаблено соответствующим повышением температуры излучения. Если атмосфера кажется душной, то соответствующее ощущение может быть ослаблено путем снижения влажности или температуры воздуха. Если температура излучения низкая (холодные стены), для достижения комфорта требуется увеличение температуры воздуха.

Согласно проведенным недавно исследованиям, значение комфортной температуры для легко одетого (рубашка, трусы, длинные хлопковые брюки) сидящего испытуемого равно примерно 25–26 °С при влажности воздуха 50% и равенстве температур воздуха и стен. Соответствующее значение для обнаженного испытуемого составляет 28 °С. При этом средняя температура кожи равна примерно 34 °С. При физической, работе по мере того как испытуемый затрачивает все больше физических усилий, комфортная температура снижается. Например, для легкой кабинетной работы предпочтительная температура воздуха равна примерно 22 °С. Как ни странно, во время тяжелой физической работы комнатная температура, при которой не возникает потоотделения, ощущается как слишком низкая.

Диаграмма на рис. 4 показывает, как соотносятся значения комфортной температуры, влажности и температуры окружающего воздуха во время легкой физической работы. Каждой степени дискомфорта может быть сопоставлено одно значение температуры – эффективная температура (ЭТ). Численное значение ЭТ находят путем проецирования на ось X точки, в которой линия дискомфорта пересекает кривую, соответствующую 50% относительной влажности. Например, все комбинации значений температуры и влажности в темно-серой области (30 °С при относительной влажности 100% или 45 °С при относительной влажности 20% и т.д.) соответствуют эффективной температуре 37 °С, которая в свою очередь соответствует определенной степени дискомфорта. В диапазоне более низких температур влияние влажности оказывается меньшим (наклон линий дискомфорта более крутой), поскольку в этом случае вклад испарения в общую теплоотдачу незначителен. Дискомфорт возрастает с увеличением средней температуры и влажности кожи. Когда значения параметров, определяющие максимальную влажность кожи (100%), превышены, тепловой баланс не может больше сохраняться. Таким образом, человек способен выдерживать условия за пределами этой границы лишь в течение короткого времени; пот при этом стекает ручьями, поскольку его выделяется больше, чем может испариться. Линии дискомфорта, конечно, смещаются в зависимости от тепловой изоляции, обеспечиваемой одеждой, скорости ветра и характера физической нагрузки.

Значения комфортной температуры в воде

Вода обладает по сравнению с воздухом значительно большей теплопроводностью и теплоемкостью. Когда вода находится в движении, возникающий турбулентный поток вблизи поверхности тела отнимает тепло так быстро, что при температуре воды 10 °С даже сильное физическое напряжение не позволяет поддерживать тепловое равновесие, и возникает гипотермия. Если тело находится в полном покое, для достижения температурного комфорта температура воды должна быть 35–36 °С. В зависимости от толщины изолирующей жировой ткани нижняя предельная комфортная температура в воде колеблется от 31 до 36 °С.

Продолжение следует

* Согласно правилу Вант-Гоффа, при изменении температуры на 10 °С (в пределах от 20 до 40 °С) потребление тканями кислорода изменяется в том же направлении в 2–3 раза.