Проведение химического анализа воды. Химический анализ воды: когда все тайное становится явным Реактивы и материалы

  • КХА вод. МВИ массовой концентрации ионов рения (VII) в питьевых, минеральных, природных (включая подземные и скважинные), морских и очищенных сточных водах методом переменнотоковой вольтамперометрии на анализаторе “ЭКОТЕСТ-ВА-4”

    МВИ
  • РЦэм 58-02 МКХА хозяйственно-бытовых и поверхностных вод на содержание диметилформамида методом газовой хроматографии
    Методика количественного химического анализа
  • КХА вод. МВИ массовой концентрации формальдегида в пробах питьевых и природных вод методом ВЭЖХ (Взамен нее внесена ФР.1.31.2013.13910)
    Методика количественного химического анализа
    МВИ
  • МКХА Воды сточные. Гравиметрический метод определения нефтепродуктов. N30-14-04-23
    Методика количественного химического анализа
  • Количественный химический анализ вод. Методика измерений массовой концентрации триэтиленгликоль-ди-(2-этилгексаноата) методом газовой хроматографии в сточных водах производства поливинилбутиральной пленки. МКХА МБУ ИЭС 001-16
    Методика количественного химического анализа
  • КХА. МВИ биохимического потребления кислорода в природных и сточных водах по изменению давления газовой фазы (манометрический метод)
    Методика количественного химического анализа
    МВИ
  • МКХА-ИХАВП-01-2012 Методика измерений содержания фторид-ионов, хлорид-ионов, нитрит-ионов, нитрат-ионов, фосфат-ионов, сульфат-ионов в пробах питьевых, природных, талых вод, почв, грунтов, донных отложений, отходов производства (бурового шлама) методом ионной хроматографии
    Методика количественного химического анализа
  • МВИ N 46-381-2010 Методы контроля. КХА. Железо хлорное (водный раствор). Массовая доля кислоты соляной. Методика измерений методом потенциометрического титрирования
    Методика количественного химического анализа
    МВИ
  • МКХА Определение массовой концентрации фтора в природных и сточных водах потенциометрическим методом
    Методика количественного химического анализа
  • МКХА "Никель (II) сернокислый 7-водный. Никель (II) сернокислый 6-водный. Определение массовой доли никеля титриметрическим методом
    Методика количественного химического анализа
  • Методика 46-380-2010 Методы контроля. КХА. Железо хлорное (водный раствор), выпускаемое по СТО 00203275-228-2009. Массовая доля нерастворимых в воде веществ. Методика измерений гравиметрическим методом
    Методика количественного химического анализа №46-380-2010
  • Методика измерений водородного показателя (рН) водных вытяжек почв, грунтов, донных отложений, отходов производства (бурового шлама) потенциометрическим методом. рН-01-2017
    Методика количественного химического анализа
  • Методика измерений массовой концентрации хлороформа в пробах воды плавательных бассейнов методом газожидкостной хроматографии. ГХВБ-01-2017
    Методика количественного химического анализа
  • Методика измерений массовых концентраций фенола и алкилфенолов в пробах питьевых, природных, талых, сточных и очищенных сточных вод методом высокоэффективной жидкостной хроматографии. ФВ-03-2017
    Методика количественного химического анализа
  • КХА вод. Методика измерений массовой концентрации железа (II) в питьевых, природных и сточных водах фотометрическим методом с о-фенантролином ПНД Ф 14.1:2:4.259-10 НДП 20.1:2:3.106-09
    Методика количественного химического анализа
    ПНД Ф
  • КХА вод. МВИ массовой концентрации ацетат-ионов в пробах природных и сточных вод методом капиллярного электрофореза аннулирована письмом N5/174 от 20.07.09 Взамен нее ФР.1.31.2009.06202
    Методика количественного химического анализа
    МВИ

Зачем нужен количественный анализ воды (сточных вод)? Условия проведения анализа. Правила забора и хранения пробы. Требования к персоналу и уровню безопасности. Нормативные документы, регламентирующие проводимые анализы. Виды количественного анализа. Титриметрия. Гравиметрия. Разновидности инструментального количественного анализа. Количественный анализ воды (сточных вод) позволяет очень точно определить концентрацию того или иного элемента или соединения. Такому анализу могут подвергаться различные виды воды. В нашей статье речь пойдёт о сточных водах.

Количественный анализ воды

Существует множество различных методик, позволяющих определить концентрацию определённых веществ в жидкости. При этом для обнаружения различного содержимого используются разные методики и способы подсчёта. Например, чтобы вычислить содержание формальдегида в питьевой воде используется одна методика, которая не позволит определить концентрацию этого вещества в краске. А для обнаружения и подсчёта массовой доли нефтепродуктов в сточных водах применяется метод колоночной хроматографии с гравиметрическим окончанием, который может использоваться только для этих целей.

Любые измерения и вычисления дают определённую долю погрешности. Обычно допустимые отклонения регламентируются ГОСТом номер 27384 с названием «Вода. Нормы погрешности измерений показателей состава и свойства».

Безопасность при проведении анализов

В зависимости от определяемого содержимого и используемых реагентов количественный химический анализ воды должен выполняться с соблюдением всех правил безопасности:

  1. При использовании химических реактивов необходимо придерживаться правил безопасности, оговоренных в ГОСТе 12.4.019.
  2. В момент использования электрического оборудования для выполнения процедуры анализа нужно придерживаться правила электробезопасности, описанных в ГОСТ 12.1.019.
  3. Весь персонал, проводящий испытания и анализы, должен пройти инструктаж по технике безопасности согласно ГОСТ12.0.004.
  4. Место (кабинет, лаборатория, организация), где проходят испытания, должно отвечать условиям по пожаробезопасности, которые описываются в ГОСТ 12.1.004.
  5. Кабинеты в обязательном порядке укомплектовываются устройствами для гашения пожара по ГОСТ 12.4.009.

Дополнительные требования

Проводить количественный анализ жидкости можно только при соответствующих условиях окружающей среды, а именно:

  • температура воздуха в помещении должна быть в пределах от 15 до 25 градусов;
  • допустимое атмосферное давление составляет 84-106 кПа;
  • в помещении должна быть влажность в пределах 75-85 %;
  • для электрического оборудования частота тока – 49-51 Гц;
  • напряжение 210-230 В.

Забор и хранение проб жидкости выполняется согласно таким условиям:

  • для отбора и хранения образцов используются специальные ёмкости из стекла с плотно прилегающими крышками.
  • Если проведение испытаний откладывается на длительный срок, то производят консервацию проб в смеси экстрагента с водой. В таком состоянии пробы могут сохраняться до 14 дней.
  • Обычно для проведения анализа достаточно использовать пробу жидкости объёмом 3-3,5 дм³.
  • Взятие пробы производится с составлением соответствующего акта, где указываются цели проведения анализов, искомые элементы и частицы (чаще загрязнители), дата, время и место взятия пробы, порядковый номер пробы, фамилия, инициалы, а также должность человека, выполняющего забор пробы.

Разновидности количественного анализа

Все методики количественного анализа можно разделить на:

  • одномерные или однокомпонентные;
  • двумерные или многокомпонентные.

Обычно для обнаружения одного элемента в жидкости достаточно использовать метод титриметрии или гравиметрии. Для обнаружения больше числа составляющих в сточной воде могут использоваться более сложные инструментальные методики. Но у более простых методов есть одно преимущество – простота проведения и точность анализа.

Титриметрия

Если количественный химический анализ сточных вод выполняется с целью обнаружения одного искомого компонента, то метод титриметрии самый подходящий. Эта методика анализов базируется на точных измерениях количества двух компонентов, участвующих в химической реакции.

Этот метод относится к группе одномерных испытаний, поэтому он позволяет вычислить объём только одного элемента. При этом не обязательно искать только одно какое-то вещество, анализ позволяет определить целую группу веществ. Например, подобный анализ позволяет очень точно определить содержание в стоках частиц кальция и магния, характеризующих жёсткость воды. Точность данных испытаний очень высока, хотя чувствительность этой методики несколько ниже, чем при инструментальных исследованиях. Именно поэтому метод не может использоваться для вычисления концентрации остаточных веществ.

Гравиметрия

Простота и точность данной методики анализа очень высока, но его трудоёмкость и длительность проведения также значительны. Данный метод подразумевает выделение искомого элемента с его взвешиванием впоследствии.

При этом искомый элемент может отделяться как в чистом виде, так и в виде какого-либо соединения. Процесс отделения вещества может выполняться методом возгонки или осаждения. В итоге искомый элемент преобразуется в плохо растворяющийся осадок. Затем этот осадок фильтруется, высушивается, подвергается прокаливанию и только потом взвешивается для определения его массы и объёма.

Инструментальный количественный анализ

Инструментальный количественный анализ сточных вод может выполняться при помощи следующих методик:

  1. Газовая хроматография с месс-спектрометрическим детектированием (разделение веществ в газовой фазе).
  2. Жидкостная хроматография высокой эффективности (разделение веществ в жидком состоянии).
  3. Электрофорез капиллярный (разделение сложных составляющих в кварцевом капилляре).
  4. Инфракрасная спектрофотометрия.
  5. Атомно-эмиссионная спектроскопия.

У нас вы можете заказать количественный анализ жидкости, который мы проведём довольно быстро и по приемлемой цене. Для этого вам необходимо связаться с нашими специалистами по телефонам, указанным на сайте.

×

Помимо химического анализа воды мы рекомендуем сделать микробиологическое исследование воды в партнерской лаборатории биологического факультета МГУ (без аккредитации).
Понятно, что несоответствие воды микробиологическим нормам, так же, как и химическим, делает ее непригодной для питья. Своевременный микробиологический анализ позволит предотвратить заражение кишечными инфекциями, передающимися водным путем, и в случае индивидуальных скважин разработать меры по очистке воды.
Микробиологический анализ воды в МГУ включает определение общего микробного числа (ОМЧ), количества общих колиформных и колиформных термотолерантных бактерий.
Общее микробное число - количество микроорганизмов в единице объема исследуемого объекта. ОМЧ позволяет получить представление о массивности бактериального загрязнения воды. Чем выше ОМЧ, тем больше вероятность попадания в объект патогенных микроорганизмов.
Колиформные организмы (общие колиформы) являются удобными микробными индикаторами качества питьевой воды. Согласно рекомендациям СанПиН, колиформные бактерии не должны обнаруживаться в системах водоснабжения с подготовленной водой. Допускается случайное попадание колиформных организмов в распределительной системе, но не более чем в 5% проб, отобранных в течение любого 12 - месячного периода. Присутствие же колиформных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.
Среди колиформных микроорганизмов выделяют группу термотолерантных бактерий, которые ферментируют лактозу при 44°С в течение 24 ч. Эти бактерии являются показателями свежего фекального загрязнения.
Микробиологическое исследование выполняется только в дополнение к химическому анализу воды.

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ
РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

«УТВЕРЖДАЮ»

Заместитель Министра

_____________ В.Ф. Костин

Значения показателей точности, повторяемости и воспроизводимости методики

Значения показателя точности методики используют при:

Оформлении результатов анализа, выдаваемых лабораторией;

Оценке деятельности лабораторий на качество проведения испытаний;

Оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, РЕАКТИВЫ

При выполнении измерений должны быть применены следующие средства измерений, оборудование и материалы:

3.1 . Средства измерения, вспомогательное оборудование

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны l = 535 нм.

Кюветы с толщиной поглощающего слоя 1 см.

Весы лабораторные, 2 класса точности по ГОСТ 24104 .

Сушильный шкаф электрический, ОСТ 16.0.801.397.

Плитка электрическая по ГОСТ 14919 .

Бидистиллятор, ТУ 25.11-15-92-81.

ГСО состава водного раствора с аттестованным содержанием цинка.

3.2 . Посуда

Колбы мерные 2-(50, 200)-2 по ГОСТ 1770

Колбы конические Кн-1-250-14/23 ТС по ГОСТ 25336 .

Пипетки мерные с делениями 0,1 см 3 , 4(5)-2-1(2),

Воронки делительные ВД-3-100 ХС по ГОСТ 25336 .

Воронки делительные ВД-3-1000 ХС по ГОСТ 25336 .

Цилиндры 1(3)-25;

Кварцевые чашки по ГОСТ 19908 (*) .

Четыреххлористый углерод, ГОСТ 20288 (продажный реактив перегоняют, собирая фракцию, кипящую при 76 °С).

Дитизон, ГОСТ 10165.

Аскорбиновая кислота, ГОСТ 4815.

Аммоний надсернокислый, ГОСТ 20478 .

Все реактивы должны быть квалификации ч.д.а. или х.ч.

. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Состав и количество образцов для градуировки для построения градуировочного графика приведены в таблице . Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Состав и количество образцов для градуировки при анализе ионов цинка

Массовая концентрация цинка в градуировочных растворах, мг/дм 3

Аликвотная часть аттестованного раствора (см 3) с концентрацией 0,01 мг/см 3 помещенного в мерную колбу на 50 см 3

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс - величину концентрации вещества в мг/дм 3 .

8.4 . Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в месяц или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице ).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

|Х - С | £ 1,96 s R л ,

где Х - результат контрольного измерения массовой концентрации цинка в образце для градуировки, мг/дм 3 ;

С - аттестованное значение массовой концентрации цинка в образце для градуировки, мг/дм 3 ;

s R л - среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: s R л = 0,84s R , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения s R приведены в таблице .

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

. УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ

Висмут, кадмий, медь, свинец, ртуть, никель, кобальт, серебро, олово (II), золото (если присутствуют в количествах меньше 5 мг/дм 3) при рН от 4,0 до 5,5 в присутствии требуемого количества тиосульфата натрия связываются в тиосульфатные комплексы и не мешают определению цинка. Если содержание этих элементов свыше 5,0 мг/дм 3 , то пробу рекомендуется разбавить так, чтобы содержание мешающего элемента стало ниже 5,0 мг/дм 3 . Железо (при концентрации выше 0,5 мг/дм 3) осаждают в щелочной среде (12 < рН < 14) гидроксидом натрия и отфильтровывают. Фильтр нейтрализуют и обрабатывают в соответствии с п. . (*)

где r - предел повторяемости, значения которого приведены в таблице .

Значения предела повторяемости при вероятности Р = 0,95

При невыполнении условия () могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице .

Значения предела воспроизводимости при вероятности Р = 0,95 12.1 . Результат анализа Х в документах, предусматривающих его использование, может быть представлен в виде: Х ср ± D , Р = 0,95,

где D - показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01 × d × Х ср .

Значение d приведено в таблице .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Х ср ± D л , Р = 0,95, при условии D л < D ,

где Х ср - результат анализа, полученный в соответствии с прописью методики;

± D л - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата анализа;

Способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

С - аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

К = D л ,

где ± D л - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия () контрольную процедуру повторяют. При повторном невыполнении условия () выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.