Почему ядро земли горячее и не остывает. Откуда мы знаем, что находится в ядре Земли? Как образовалось ядро Земли

Уронив ключи в поток расплавленной лавы, попрощайся с ними, потому что, ну, чувак, они – всё.
- Джек Хэнди

Взглянув на нашу родную планету, можно заметить, что 70% её поверхности покрыто водой.

Мы все знаем, отчего это так: потому что океаны Земли всплывают над камнями и грязью, из которых состоит суша. Концепция плавучести, при которой менее плотные объекты всплывают над более плотными, погружающимися ниже, объясняет гораздо больше, чем просто океаны.

Тот же принцип, объясняющий, почему лёд плавает в воде, шар с гелием поднимается в атмосфере, а камни тонут в озере, объясняет, почему слои планеты Земля устроены именно так.

Наименее плотная часть Земли, атмосфера, плавает над водными океанами, которые плавают над земной корой, которая находится над более плотной мантией, которая не тонет в самую плотную часть Земли: в кору.

В идеале самым стабильным состоянием Земли было бы такое, которое идеально распределялось бы на слои, на манер луковицы, и самые плотные элементы были в центре, а по мере продвижения наружу каждый последующий слой состоял бы из менее плотных элементов. И каждое землетрясение, на самом-то деле, двигает планету по направлению к этому состоянию.

И это объясняет строение не только Земли, но и всех планет, если вспомнить, откуда эти элементы взялись.


Когда Вселенная была молодой – возрастом всего в несколько минут – в ней существовали только водород и гелий. Все более тяжёлые элементы создавались в звёздах, и только когда эти звёзды погибли, тяжёлые элементы вышли во Вселенную, позволяя формироваться новым поколениям звёзд.


Но на этот раз смесь всех этих элементов – не только водорода с гелием, но и углерода, азота, кислорода, кремния, магния, серы, железа и других – формирует не только звезду, но и протопланетный диск вокруг этой звезды.

Давление изнутри наружу в формирующейся звезде выталкивает более лёгкие элементы, а гравитация приводит к тому, что неравномерности в диске коллапсируют и формируют планеты.


В случае Солнечной системы четыре внутренних мира являются самыми плотными из всех планет системы. Меркурий состоит из самых плотных элементов, которые не смогли удержать большое количество водорода и гелия.

Другие планеты, более массивные и более удалённые от Солнца (а следовательно, получающие меньше его излучения), смогли удержать больше этих ультралёгких элементов – так сформировались газовые гиганты.

У всех миров, как и на Земле, в среднем самые плотные элементы сосредоточены в ядре, а лёгкие формируют всё менее плотные слои вокруг него.


Неудивительно, что железо, самый стабильный элемент, и самый тяжёлый элемент, создаваемый в больших количествах на границе сверхновых, и есть самый распространённый элемент земного ядра. Но возможно, удивительным будет то, что между твёрдым ядром и твёрдой мантией находится жидкий слой толщиной более 2000 км: внешнее ядро Земли.


У Земли есть толстый жидкий слой, содержащий 30% массы планеты! А узнали мы о его существовании довольно остроумным методом - благодаря сейсмическим волнам, происходящим от землетрясений!


В землетрясениях рождаются сейсмические волны двух типов: основная компрессионная, известная, как Р-волна , проходящая продольным путём

и вторая сдвиговая волна, известная, как S-волна , похожая на волны на поверхности моря.

Сейсмические станции по всему миру способны улавливать Р- и S-волны, но S-волны не проходят через жидкость, а Р-волны не только проходят через жидкость, но и преломляются!

В результате можно понять, что у Земли есть жидкое внешнее ядро, вне которого находится твёрдая мантия, а внутри – твёрдое внутреннее ядро! Вот поэтому в ядре Земли содержатся самые тяжёлые и плотные элементы, и так мы знаем, что внешнее ядро – это жидкий слой.

Но почему внешнее ядро жидкое? Как и все элементы, состояние железа, твёрдое, жидкое, газообразное, или другое, зависит от давления и температуры железа.

Железо – элемент более сложный, чем многие привычные вам. Конечно, у него могут быть разные кристаллические твёрдые фазы, как указано на графике, но нас не интересуют обычные давления. Мы спускаемся к ядру земли, где давления в миллион раз превышают давление на уровне моря. А как выглядит фазовая диаграмма для таких высоких давлений?

Прелесть науки в том, что даже если у вас сразу нет ответа на вопрос, есть вероятность, что кто-то уже делал нужное исследование, в котором можно найти ответ! В этом случае, Аренс, Коллинз и Чен в 2001 году нашли ответ на наш вопрос.

И хотя на диаграмме показаны гигантские давления до 120 ГПа, важно помнить, что давление атмосферы составляет всего лишь 0.0001 ГПа, в то время как во внутреннем ядре давления достигают 330-360 ГПа. Верхняя сплошная линия показывает границу между плавящимся железом (вверху) и твёрдым (внизу). Вы обратили внимание, как сплошная линия в самом конце совершает крутой поворот вверх?

Для того, чтобы железо плавилось при давлении 330 ГПа, требуется огромная температура, сравнимая с той, что преобладает на поверхности Солнца. Эти же температуры при меньших давлениях легко будут поддерживать железо в жидком состоянии, а при более высоких – в твёрдом. Что это означает с точки зрения ядра Земли?


Это означает, что с охлаждением Земли падает её внутренняя температура, а давление остаётся неизменным. То есть, при формировании Земли, скорее всего, жидкой было всё ядро, и по мере охлаждения внутреннее ядро растёт! И в процессе этого, поскольку у твёрдого железа плотность выше, чем у жидкого, Земля потихоньку сжимается, что приводит к землетрясениям!


Так что, ядро Земли жидкое, поскольку оно достаточно горячее, чтобы расплавить железо, но только в регионах с достаточно низким давлением. По мере старения и охлаждения Земли всё большая часть ядра становится твёрдой, и поэтому Земля немного сжимается!

Если мы захотим заглянуть далеко в будущее, мы можем ожидать появления таких же свойств, какие наблюдаются у Меркурия.


Меркурий благодаря малому размеру уже значительно охладился и сжался, и обладает разломами длиной в сотни километров, появившимися из-за необходимости сжатия благодаря охлаждению.

Так почему у Земли жидкое ядро? Потому, что она ещё не охладилась. И каждое землетрясение – это небольшое приближение Земли к конечному, остывшему и насквозь твёрдому состоянию. Но не волнуйтесь, задолго до этого момента взорвётся Солнце, и все, кого вы знаете, будут уже очень давно мертвы.

Земля вместе с другими телами Солнечной системы сформировалась из холодного газопылевого облака путем аккреции составивших ее частиц. После возникновения планеты начался совершенно новый этап ее развития, который в науке принято называть догеологическим.
Название периода связано с тем, что самые ранние свидетельства былых процессов – магматические или вулканические породы – не древнее 4 млрд лет. Только их сегодня могут изучить ученые.
Догеологический этап развития Земли таит в себе еще немало загадок. Он охватывает период в 0,9 млрд лет и характеризуется широким проявлением на планете вулканизма с выделением газов и паров воды. Именно в это время начался процесс расслоения Земли на основные оболочки – ядро, мантию, кору и атмосферу. Предполагается, что данный процесс был спровоцирован интенсивной метеоритной бомбардировкой нашей планеты и плавлением отдельных ее частей.
Одним из ключевых событий в истории Земли было формирование ее внутреннего ядра. Вероятно, это произошло в догеологический этап развития планеты, когда все вещество разделилось на две основные геосферы – ядро и мантию.
К сожалению, достоверной теории об образовании земного ядра, которая подтверждалась бы серьезными научными сведениями и доказательствами, пока не существует. Как все-таки образовалось ядро Земли? На этот вопрос ученые предлагают две основные гипотезы.
Согласно первой версии, вещество непосредственно после возникновения Земли было однородным.
Оно целиком состояло из микрочастиц, которые можно сегодня наблюдать в метеоритах. Но по прошествии определенного промежутка времени эта первично-однородная масса разделилась на тяжелое ядро, куда стекло все железо, и более легкую силикатную мантию. Иными словами, капли расплавленного железа и сопутствовавшие ему тяжелые химические соединения оседали к центру нашей планеты и образовывали там ядро, которое и в наши дни остается в значительной степени расплавленным. По мере того как тяжелые элементы стремились к центру Земли, легкие шлаки наоборот всплывали наверх – к внешним слоям планеты. Сегодня эти легкие элементы составляют верхнюю мантию и земную кору.
Почему произошла такая дифференциация вещества? Считается, что сразу после завершения процесса своего формирования Земля стала интенсивно разогреваться, прежде всего за счет энергии, выделявшейся в процессе гравитационной аккумуляции частиц, а также благодаря энергии радиоактивного распада отдельных химических элементов.
Дополнительному разогреву планеты и образованию железоникелевого сплава, который в силу своего значительного удельного веса постепенно опускался к центру Земли, способствовала предполагаемая метеоритная бомбардировка.
Правда, эта гипотеза сталкивается с некоторыми трудностями. Например, не совсем понятно, каким же образом железоникелевый сплав даже в жидком состоянии смог опуститься на более чем тысячу километров и достичь района ядра планеты.
В соответствии со второй гипотезой ядро Земли сформировалось из железных метеоритов, которые сталкивались с поверхностью планеты, и позже оно обросло силикатной оболочкой из каменных метеоритов и сформировало мантию.

В этой гипотезе есть серьезный недостаток. При таком раскладе в космическом пространстве железные и каменные метеориты должны существовать раздельно. Современные же исследования показывают, что железные метеориты могли возникнуть лишь в недрах планеты, распавшейся под значительным давлением, то есть уже после образования нашей Солнечной системы и всех планет.
Первая версия выглядит логичнее, поскольку предусматривает динамичную границу между ядром Земли и мантией. Это означает, что процесс разделения вещества между ними мог продолжаться на планете еще очень долгое время, оказывая тем самым большое влияние на дальнейшую эволюцию Земли.
Таким образом, если брать за основу первую гипотезу формирования ядра планеты, то процесс дифференциации вещества растянулся примерно на 1,6 млрд лет. За счет гравитационной дифференциации и радиоактивного распада обеспечивалось разделение вещества.
Тяжелые элементы опускались только до глубины, ниже которой вещество было такое вязкое, что железо погружаться уже не могло. В результате этого процесса образовался очень плотный и тяжелый кольцевой слой расплавленного железа и его окиси. Он располагался над более легким веществом первозданной сердцевины нашей планеты. Далее произошло выдавливание легкого силикатного вещества из центра Земли. Причем оно было вытеснено на экваторе, что, возможно, положило начало асимметрии планеты.
Предполагается, что при формировании железного ядра Земли произошла значительная убыль объема планеты, вследствие чего ее поверхность к настоящему времени уменьшилась. «Всплывшие» к поверхности легкие элементы и их соединения сформировали тонкую первичную кору, которая состояла, как и у всех планет земной группы, из вулканических базальтов, перекрытых сверху толщей отложений.
Однако найти живые геологические свидетельства былых процессов, связанных с формированием земного ядра и мантии, не удается. Как уже отмечалось, древнейшие каменные породы на планете Земля имеют возраст около 4 млрд лет. Скорее всего, в начале эволюции планеты под действием высоких температур и давлений первичные базальты метаморфизировались, переплавились и преобразовались в известные нам гранитно-гнейсовые породы.
Что же представляет собой ядро нашей планеты, сформировавшееся, вероятно, на самых ранних этапах развития Земли? Оно состоит из внешней и внутренней оболочек. Согласно научным предположениям, на глубине 2900-5100 км находится внешнее ядро, которое по своим физическим свойствам приближается к жидкости.
Внешнее ядро представляет собой потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с этим ядром ученые связывают происхождение земного магнитного поля. Оставшийся до центра Земли промежуток в 1270 км занимает внутреннее ядро, на 80 % состоящее из железа и на 20 % – из диоксида кремния.
Внутреннее ядро отличается твердостью и высокой температурой. Если внешнее непосредственно связано с мантией, то внутреннее ядро Земли существует само по себе. Твердость его, несмотря на высокие температуры, обеспечивается гигантским давлением в центре планеты, которое может достигать 3 млн атмосфер.
Многие химические элементы в результате переходят в металлическое состояние. Поэтому даже высказывалось предположение, что внутреннее ядро Земли состоит из металлического водорода.
Плотное внутреннее ядро оказывает серьезное влияние на жизнь нашей планеты. В нем сосредоточено планетарное гравитационное поле, которое удерживает от разлета легкие газовые оболочки, гидросферу и геосферные слои Земли.
Вероятно, такое поле было характерно для ядра с момента формирования планеты, каким бы оно ни было тогда по своему химическому составу и строению. Оно способствовало стягиванию формировавшихся частиц к центру.
Все же происхождение ядра и изучение внутреннего строения Земли – самая актуальная проблема для ученых, вплотную занимающихся исследованием геологической истории нашей планеты. До окончательного решения этого вопроса еще очень далеко. Чтобы избежать различных противоречий, в современной науке принята гипотеза о том, что процесс образования ядра начал происходить одновременно с формированием Земли.

Наша планета Земля имеет слоистое строение и состоит из трех основных частей: земной коры, мантии и ядра. Что является центром Земли? Ядро. Глубина залегания ядра составляет 2900 км., а диаметр равняется примерно 3,5 тыс. км. Внутри - чудовищное давление в 3 миллиона атмосфер и невероятно большая температура - 5000°С. Для того чтобы узнать, что находится в центре Земли, ученым понадобилось несколько веков. Даже современная техника не смогла проникнуть глубже двенадцати с небольшим тысяч километров. Самая глубокая буровая скважина, находящаяся на Кольском полуострове, имеет глубину 12 262 метра. До центра Земли далековато.

История открытия земного ядра

Одним из первых догадался о наличии ядра в центре планеты английский физик и химик Генри Кавендиш в конце 18 века. С помощью физических экспериментов он вычислил массу Земли и, исходя из ее размеров, определил среднюю плотность вещества нашей планеты - 5,5 г/см3. Плотность известных горных пород и минералов в земной коре оказалась примерно в два раза меньше. Отсюда следовало логичное предположение, что в центре Земли находится область более плотного вещества - ядро.

В 1897 году немецкий сейсмолог Э. Вихерт, изучая прохождение сейсмологических волн через внутренние части Земли, смог подтвердить предположение о наличии ядра. А в 1910 году американский геофизик Б. Гутенберг определил глубину его расположения. Впоследствии родились и гипотезы о процессе образования ядра. Предполагается, что оно образовалось вследствие оседания более тяжелых элементов к центру, а первоначально вещество планеты было однородным (газообразным).

Из чего состоит ядро?

Исследовать вещество, образец которого нельзя получить, чтобы изучить его физические и химические параметры, довольно сложно. Ученым приходится только предполагать о наличии тех или иных свойств, а также о строении и составе ядра по косвенным признакам. Особенно помогло в исследовании внутреннего строения Земли изучение распространения сейсмических волн. Сейсмографы, расположенные во многих точках на поверхности планеты, регистрируют скорость и виды проходящих сейсмических волн, возникающих вследствие сотрясений земной коры. Все эти данные дают возможность судить о внутреннем строении Земли, в том числе и ядра.

На сегодняшний момент ученые предполагают, что центральная часть планеты неоднородна. Что находится в центре Земли? Часть, примыкающая к мантии, - это жидкое ядро, состоящее из расплавленного вещества. По-видимому, там содержится смесь железа и никеля. На эту мысль ученых навело исследование железных метеоритов, которые представляют собой кусочки ядер астероидов. С другой стороны, получаемые железно-никелевые сплавы имеют более высокую плотность, чем предполагаемая плотность ядра. Поэтому многие ученые склонны предполагать, что в центре Земли, ядре, есть и более легкие химические элементы.

Наличием жидкого ядра и вращением планеты вокруг собственной оси геофизики объясняют и существование магнитного поля. Известно, что электромагнитное поле вокруг проводника возникает при движении тока. Вот таким гигантским проводником с током и служит расплавленный слой, примыкающий к мантии.

Внутренняя часть ядра, несмотря на температуру в несколько тысяч градусов, представляет собой твердое вещество. Это связано с тем, что давление в центре планеты настолько высоко, что раскаленные металлы становятся твердыми. Некоторые ученые предполагают, что твердое ядро состоит из водорода, который под действием невероятного давления и огромной температуры становится похожим на металл. Таким образом, что является центром Земли, даже ученым-геофизикам пока доподлинно неизвестно. Но если рассматривать вопрос с математической точки зрения, то можно сказать, что центр Земли находится приблизительно в 6378 км. от поверхности планеты.

20321 0

Используя тонкое сочетание ускорителей частиц, рентгеновских лучей, высокоинтенсивных лазеров, алмазов и атомов железа, учёные сумели вычислить температуру внутреннего ядра нашей планеты.

Согласно новым подсчётам, она составляет 6000 градусов по Цельсию, что на тысячу градусов выше, чем считалось ранее.

Таким образом, ядро планеты Земля имеет более высокую температуру, чем поверхность Солнца.

Новые данные могут повлечь за собой переосмысление считавшимися непреложными фактов в таких областях знания, как геофизика, сейсмология, геодинамика и других ориентированных на изучение планеты дисциплинах.

Если смотреть с поверхности вглубь, Земля состоит из коры, твёрдой верхней мантии, далее по большей части твёрдой мантии, внешнего ядра из расплавленного железа и никеля и внутреннего ядра из твёрдого железа и никеля. Внешнее ядро находится в жидком состоянии по причине высоких температур, но более высокое давление во внутреннем ядре препятствует расплавлению породы.

Расстояние от поверхности до центра Земли составляет 6371 км. Толщина коры равняется 35 км, мантии 2855 км; на фоне таких расстояний Кольская сверхглубокая скважина глубиной 12 км выглядит сущим пустяком. По существу, о том, что происходит под корой, достоверно нам ничего не известно. Все наши данные основаны на сейсмических волнах землетрясений, отражающихся от различных слоёв Земли, и жалких крох, попадающих на поверхность из глубины, как вулканическая магма.

Естественно, учёные с превеликим удовольствием пробурили бы скважину до самого ядра, но с нынешним уровнем развития технологий осуществление этой задачи не представляется возможным. Уже на двенадцати километрах бурение Кольской скважины пришлось прекратить, так как температура на такой глубине составляет 180 градусов.

На пятнадцати километрах температура прогнозируется на уровне в 300 градусов, и при ней современные буровые установки работать не смогут. И уж тем более сейчас и близко нет технологий, которые дали бы возможность вести бурение в мантии, в диапазоне температур 500-4000 градусов. Не стоит забывать и о практичной стороне дела: за пределами коры нет нефти, так что инвестировать в попытку создания подобных технологий желающих может и не найтись.

Чтобы вычислить температуру во внутреннем ядре, французские исследователи сделали всё возможное для воссоздания сверхвысоких температур и давления ядра в лабораторных условиях. Имитация давления является самой сложной задачей: на такой глубине оно достигает значения 330 гигапаскалей, что в три миллиона раз превышает атмосферное давление.

Чтобы решить её, использовалась ячейка с алмазными наковальнями. Она представляет собой два алмаза конической формы, которые воздействуют на материал с двух сторон на площади диаметром менее миллиметра; таким образом, на образец железа оказывалось давление в 200 гигапаскалей. Затем железо нагревалось при помощи лазера, подвергалось дифракционному анализу рентгеновскими лучами для наблюдения перехода от твёрдого к жидкому состоянию при таких кондициях. Наконец, учёные внесли поправки в полученные результаты для давления в 330 гигапаскалей, получив температуру покрытия внутреннего ядра 5957 плюс-минус 500 градусов. Внутри самого ядра она, по всей видимости, ещё выше.

Почему же переосмысление температуры ядра планеты имеет большое значение?

Магнитное поле Земли генерируется именно ядром и влияет на множество событий, происходящих на поверхности планеты - например, удерживает атмосферу на месте. Знание, что температура ядра на тысячу градусов выше, чем считалось ранее, пока не даёт никаких практических областей применения, но может пригодиться в будущем. Новое значение температуры будет использоваться в новых сейсмологических и геофизических моделях, которые в будущем вполне могут привести к серьезным научным открытиям. По большому же счёту, более полная и точная картина окружающего мира ценна для учёных сама по себе.

Земное ядро включает в себя два слоя с пограничной зоной между ними: внешняя жидкая оболочка ядра достигает толщины в 2266 километров, под ней расположено массивное плотное ядро, диаметр которого по подсчетам достигает 1300 км. Переходная зона имеет неоднородную толщину и постепенно затвердевает, переходя во внутреннее ядро. На поверхности верхнего слоя температура находится в районе 5960 градусов по Цельсию, хотя эти данные считаются приблизительными.

Примерный состав внешнего ядра и методы его определения

О составе даже внешнего слоя земного ядра до сих пор известно очень мало, так как ни представляется возможным добыть образцы для изучения. Основные элементы, из которых может состоять внешнее ядро нашей планеты, - железо и никель. К такой гипотезе ученые пришли в результате анализа состава метеоритов, поскольку скитальцы из космоса представляют собой обломки ядер астероидов и других планет.

Тем не менее метеориты нельзя считать абсолютно точно совпадающими по химическому составу, так как исходные космические тела были намного меньше Земли по размеру. После долгих исследований ученые пришли к выводу, что жидкая часть ядерного вещества сильно разбавлена другими элементами, в том числе серой. Это объясняет ее более низкую плотность, чем у железоникелевых сплавов.

Что происходит на внешней части ядра планеты?

Внешняя поверхность ядра на границе с мантией неоднородна. Ученые предполагают, что она имеет разную толщину, образуя своеобразный внутренний рельеф. Это объясняется постоянным смешиванием разнородных глубинных веществ. Они различны по химическому составу, а также имеют разную плотность, поэтому толщина границы между ядром и мантией может варьироваться от 150 до 350 км.

Фантасты прежних лет в своих произведениях описывали путешествие к центру Земли через глубокие пещеры и подземные переходы. Возможно ли это на самом деле? Увы, давление на поверхности ядра превышает 113 миллионов атмосфер. Это значит, что любая пещера наглухо «захлопнулась» бы еще на этапе приближения к мантии. Это объясняет, почему на нашей планете нет пещер глубже хотя бы 1 км.

Как изучают внешний слой ядра?

О том, как выглядит и из чего состоит ядро, ученые могут судить, отслеживая сейсмоактивность. Так, к примеру, было выяснено, что внешний и внутренний слой вращаются в разных направлениях под действием магнитного поля. Ядро Земли таит еще десятки неразгаданных тайн и ждет новых фундаментальных открытий.